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ABSTRACT

L A mathematical model for use in real-time piloted simula- '
tion of a 1985-era tilt rotor passenger aircraft is presented. _:

i The model comprises the basic six degrees-of-freedom equations
I of motion, and a large angle of attack representation of the

airframe and rotor aerodynamics, together with equations and
functions used to model turbine engine performance, aircraft
control system and stability augmentation system.

A complete derivation of the primary equations is given
': together with a description of the modeling techniques used. ;
_. Data for the model is included in an Appendix.
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FOREWORD

This report was prepared by the Boeing Vertol Company for
the National Aeronautics and Space Administration, Ames Research
Center, under Contract NAS2-8048. The contract was administered

by NASA. Mr. Richard J. Abbott was the Contract Administrator;
Messrs George P. Callas, Michael A. Shovlin, T. Galloway were

the Technical Monitors. The Boeing Vertol Project Manager was

Mr. Harold Alexander and the Project Engineer was Mr. Michael

A. McVeigh. _
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SUMMARY

This report documents the equations, functions, control

systems diagrams, and data required in the real-time simulation

of a 1985-era tilt rotor passenger aircraft. The simul_tio _
mathematical model was intended for use on the NASA-Ames ._

Simulator for Advanced Aircraft to study the handling qua! ,
of large tilt rotor aircraft. The model could also be us_ ,,
research on advanced terminal area control..rs. _"

,I

The mathematical model consists of the rigid body equations

for motion of the aircraft in roll, pitch, and yaw about a

moving center of gravity. The equations differ somewhat from

the classical equations because of the necessity of accounting !
for the motion of the tilting rotors and nacelles. The math

model is "full-force", that is, the representation of the aero-

dynamics of the rotors and airframe is suitable for the large

- angles of attack encountered in VSTOL flight and can represent

_re rearwards and sidewards flight from hover. The aero-
dynamics of the airframe and the interference between components

was estimated from a combination of theory and experimental

data. The forces and moments acting on the large 56-foot dia-

meter hingeless rotors were obtained from a regression analysis i
of test data on a smaller rotor of similar construction and

properties. The control system models pflot controls, a thrust

management system and a stability augmentation system.

xi
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LIST OF SYMBOLS

Symbol De finition Units

A Rotor disc area (per rotor) ft 2

AR Aspect ratio, b2/S ND

Alc Lateral cyclic angle in rotor wind deg
axes

j
A[c Lateral cyclic angle in swashplate deg

axes

A" Lateral cyclic angle in swashplate deg
ic axes resolved through swashplate

phase angle

Speed of sound or acceleration ft/sec or

- ft/sec 2

a Acceleration ft/sec2

(ag/a) Ratio of lift-curve slope in ground ND
effect to lift-curve slope out of

ground effect

ao+a32 Coefficients in wing lift and drag --
equations

BG Percent brake pedal deflection ND

B.L. Aircraft butt line in.

Blc Longitudinal cyclic angle in rotor deg
wind axes

Bic Longitudinal cyclic angle in swash- deg
plate axes

Bic Longitudinal cyclic angle in swash- deg
plate axes resolved through swash-

plate phase angle

b Span of lifting surface (wing, tail, ft
etc)

c Chord ft

CD Drag coefficient, D__ ND
qs
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Symbol De finition Units

CDo Drag coefficient at zero lift ND

" _CD Drag coefficient increment ND

CDS Drag coefficient referred to rotor ND
slipstream dynamic pressure, D/qsS

CL Lift coefficient, L/qS ND "
l

CLo Average lift coefficient ND

AC L Lift coefficient increment ND

- CLs Lift coefficient referred to rotor ND
slipstream dynamic pressure, L/qsS

,, CLu Lift-curve slope i/rad

CL6 Lift increment due to flap deflection i/deg

" _ Rolling moment coefficient, _/q bS ND

C_s Rolling moment coefficient referred ND
to rotor slipstream dynamic pressure,

_/qsbS

• CM Pitching moment coefficient, M/qSc ND

CMo Wing pitching moment coefficient as a ND
function of flap deflection; pitching

moment coefficient of fuselage or

nacelles at zero angle of attack

_C M Pitching moment coefficient increment ND

CMs Pitching moment coefficient referred
to rotor slipstream dynamic pressure,

M/qsS c

Change in wing/body pitching moment ND

CM6 coefficient as a function of flaperon
deflection

CN Yawing moment coefficient, N/qSb ND

CNo Yawing moment coefficient of fuselage ND
or nacelles at zero angle of attack

xvi
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Symbol Definition Units

CN s Yawing moment coefficient referred to ND
rotor slipstream dynamic pressure,

N/qsSb

CNF Rotor normal force coefficient, ND
NF/0 _£2R#

CNF o Rotor normal force coefficient with ND
zero cyclic pitch

Cp Rotor power coefficient, 550RHP ND

p#£BR5

CPo Rotor power coefficient with zero ND
cyclic pitch

CpM Rotor hub pitching moment coefficient, ND
PM/p _2R5

.. CpM ° Rotor hub pitching moment coefficient ND
with zero cyclic pitch

CSF Rotor side force coefficient, ND
SF/p _2R#

CSF 0 Rotor side force coefficient with zero ND
cyclic pitch

CT Rotor thrust coefficient, T/p_2R # ND

CTo Rotor thrust coefficient with zero ND
cyclic pitch

CTs Rotor thrust coefficient referred to ND
rotor slipstream dyna,_ic pressure,

T/qsA

Cy Side force coefficient, Y/qS ND

CyM Rotor ' moment coefficient, ND
p_£2RsYaWlng

... CyM o Rotor yawing moment coefficient with ND
zero cyclic pitch

Cy Lift-curve slope of vertical tail i/rad

.. Co Coefficient of equation that defines ND
pitching moment coefficient as a

.- , function of flap deflection

xvii
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z Symbol De finition Units

C 1 Coefficient of equation that defines i/rad
pitching moment coefficient as a

function of flap deflection

C 2 Coefficient of equation that defines i/rad 2
• pitching moment coefficient as a

function of flap deflection

D Rotor diameter ft

(D/T) Aircraft download-to-thrust ratio ND

DNFI Coefficients in the equation for the i/deg
• change in normal force coefficient

with lateral cyclic angle

DpMI+ 6 Coefficients in the equation for the i/deg
change in hub pitching moment coeffi-

" cient with lateral cyclic angle

DSFI Coefficients in the equation for the I/deg
change in side force coefficient with
lateral cyclic angle

_ DST n Damping coefficients of the landing ib/ft/sec
gear oleo struts

DyMI_ 6 Coefficients in the equation for the i/deg
" change in hub yawing moment coeffi o

clent with lateral cyclic angle

dCNF/dAIc Change in normal force coefficient i/deg
r with lateral cyclic angle

dCNF/dBIc Change in normal force coefficient i/deg
wlth longitudinal cyclic angle

dCPM/dAlc Change _n hub pitching moment coeffi- i/deg

cient with lateral cyclic angle

dCPM/dBlc Change in hub pitching moment coeffi- i/deg

_r cient with longitudinal cyclic angle

dCpM/dQ Change _n hub pitching moment coeffi- i/rad/sec
cient with pitch rate

dCsF/dAlc Change in side force coefficient with 1/deg

lateral cyclic angle

xviii
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S[mbo I De fini tion Units

dCsF/dBIc Change in side force coefficient with i/deg
longitudinal cyclic angle

" dCyM/dAlc Change in hub yawing moment coeffi-- i/deg
cient with lateral cyclic angle

J

" dCYM/dBlc Change in hub yawing moment coeffi- i/deg
cient with longitudinal cyclic angle

.. dCyM/dR Change in hub yawing moment coeffi- i/rad/sec ,
cient with yaw rate

_. dCM/dC L Change in wing pitching moment with ND
lift coefficient

d_/d8 Change an fuselage sidewash angle ND

_ with sideslip angle

EI Product of modulus of elasticity and ib-in 2
• . moment of inertia

EI O Product of modulus of elasticity and ib-in 2

.. moment of inertia at wing root

ENFI_ 5 Coefficients in the equation for the i/deg
change in normal force coefficient

" with longitudinal cyclic angle

EpMI Coefficients in the equation for the i/deg
change in hub pitching moment coeffi-

cient with longitudinal cyclic angle

ESFl Coefficients in the equation for the I/deg
change in side force coefficient with

longitudinal cyclic angle

EYMI_ 6 Coefficients in the equation for the i/deg
change in hub yawing moment coeffi-

cient with longitudinal cyclic angle

EHT, EVT Oswald efficiency of horizontal or ND
"_ vertical tail

F Generalized force or force on nacelle ib

FPR Lateral-directional SAS function --
i

FRI Lateral-directional SAS function --

-- F_ Lateral-directional SAS function --

xix i
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Symbo i De fini tion Uni t_____s

" F_I Lateral-directional SAS function -- _

F#2 Lateral-directional SAS function --

- F_l Lateral-directional SAS function --

F_2 Lateral-directional SAS function --

Fa Aerodynamic force on nacelle ib i

-_ Fgzn Landing gear oleo strut vertical force ib

Fs n Landing gear oleo strut lateral force ib

Fx Longitudinal generalized force Ib

Fy Lateral generalized force Ib

F z Vertical generalized force ib

F_n Landing gear oleo strut longitudinal ib
force

fNF Multiplier on rotor normal force ND
o

fp Multiplier on rotor power ND

fPM Multiplier on rotor hub pitching ND
moment

fQ Multiplier on rotor torque ND

fSF Multiplier on rotor side force ND

fT Multiplier on rotor thrust ND

fYM Multiplier on rotor hub yawing moment ND

G Generalized moment ft-lb

GEF Ground effect factor. ND

GGI Governor gain deg/sec/rad/
sec

GG2 Governor gain deg/sec/rad/
sec

GG3 Governor gain deg/sec/deg

xx
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, Symbol Definition Units
I°.° /

Gp Lateral directional SAS gain in/rad/sec -

• _ Gpr I Lateral directional SAS gain in/rad/sec

Gp_ s Lateral directional SAS gain in/in
i •

_-_ Gq Longitudinal SAS gain deg/rad/sec ,_.
;

! G r Lateral directional SAS galn _n/rad/seci

Gr2 Lateral directional SAS galn in/rad/sec _.

Gr_ r Lateral directional SAS gain _n/rad/sec _
L_

G6p Lateral directional SAS galn _n/rad

_" G_r Lateral directional SAS galn _n/rad

i G86 r Lateral directional SAS galn in/in

• G6B 1 Longitudinal SAS gain deg/in
?

: G6B 2 Longitudinal SAS gain deg/in

G6T H Governor throttle gain ° deg/in "

Ge Longitudinal SAS gain deg/rad/sec

G# Lateral directional SAS gain in/rad/sec

G_ Lateral directional SAS gain in/in

G_6 r Lateral directional SAS gain in/in

g Gravitational constant ft/sec 2

_,_ '

H Height ft

HP Ho rs ep owe r --

Horizontal distance between wing ft iH'
w'FUEL

mass element center of gravity and

L. fuel center of gravity

H' Horizontal distance between wing ft

i w'NF mass element center of gravity" and

_- fixed nacelle center of gravity

i Hw'w Horizontal distance between wing ft
-- mass element center of gravity and

fixed nacelle center of gravity

I "" xxi

1977016150-021



I

.2

: D238-I0002-I ..

: Symbol De finition Units

' h Height or angular momentum ft or Ib-ft-
: sec

,:_ hcGN Angular momentum of nacelle about ib-ft-sec
aircraft center of gravity

h F Distance from wing pivot plane to ft
fuselage mass element center of

gravity

: hp Height of pivot above wing chord line ft
-_ or angular momentum of nacelle about

: the pivot

hT Landing gear oleo strut deflection ft

. during ground contact

hw Distance from wing pivot plane to ft

wing mass element center of gravity

: h o Angular momentum of an element of ib-ft-sec
, mass about its own center of gravity
i'

h I Wing vertical bending deflection ft

h/D Rotor hub height to rotor diameter ND
ratio

h 0 Distance from aircraft center of ft
gravity to bottom of right main gear

following a positive pitch rotation

he Distance from aircraft center of ft
gravity to bottom of right main gear

following a positive roll

I Mass moment of inertia slug-ft 2

Ixx Vehicle mass roll moment of inertia slug-ft 2
about center of gravity

Ixx 0 Mass roll moment of inertia of air- slug-ft 2
craft components about their own

centez- of gravity

Ixx(F) Mass roll moment of inertia of fuse- slug-ft 2

lage mass element about its center

of gravity

xxii
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! I Symbol De finition Units

Ixx (W) Mass roll moment of inertia of wing slug-ft 2
mass element about its center of

L

__ gravi ty

' Mass roll moment of inertia of the slug-ft 2Ixx
tilting portion of each nacelle about

: its center of gravit-_--

Iyy Vehicle mass pitch moment of inertia slug-ft 2 I
_ about center of gravity

I Iyy o Mass pitch moment of inertia of air- slug-ft 2

i_. craft components about their centers
of gravity

" ii Iyy(F) Mass pitch moment of inertia of fuse- slug-ft 2 :
.. lage mass element about its center of
, gravity

) (w)
_-- Iyy Mass pitch moment of inertia of wing slug-ft 2

: mass element about its center of

_ i gravity

_ I_y Mass pitch moment of inertia of the slug-ft 2
" 1 tilting portion of each nacelle about
_i i its center of gravity

, Ixz Vehicle mass product of inertia about slug-ft 2
center of gravity

Ixz ° Mass product of inertia of aircraft slug-ft 2
i components about their own centers of

!. gravity

I(F) Mass product of inertia of fuselage slug-ft 2xz
mass element about its center of

gravity

i(w)
xz Mass product of inertia of wing mass slug-ft 2

element about its center of gravity

' Mass product of inertia of the tilting slug-ft 2Ix z
portion of each nacelle about its

center of gravity

Izz Vehicle mass yaw moment of inertia slug-ft 2 !
about center of gravity

Izz ° Mass yaw moment of inertia of aircraft slug-ft 2
components about their own centers of
gravity

xxiii _
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Symbol De finition Units

(F)
Izz Mass yaw moment of inertia of fuselage slug-ft 2

, mass element about its center of

gravity

I(W) Mass yaw moment of inertia of wing slug-ft 2• ZZ
mass element about its center of

gravity

' Mass yaw moment of inertia of the slug-ft 2Izz
tilting portion of each nacelle about

its center of gravity

i Incidence angle deg or rad

Unit vector in i direction
D

Jxx Dummy inertia, Izz-Iyy slug-ft 2

Jyy Dummy inertia, Ixx-Izz slug-ft 2

Jzz Dummy inertia, Iyy-Ixx slug-ft 2
/%

" j Unit vector in j direction --

K_ Wing slipstream correction factor ND

KDI KD4 Coefficients of curve fit equation ND

T T for wing download as a function of
rotor height/diameter ratio

KMI KM4 Coefficients of curve fit equation ND

-_- _ -_- for wing pitching moment as a func-
tion of rotor height/diameter ratio

K._ Multiplier on slipstream rolling ND
moment coefficient

Kn Miltiplier on slipstream yawing ND
moment coefficient

KST Landing gear spring constants ib/ft
n

KwI_KWI 0 Coefficients for wing bending --
equations

Multiplier on longitudinal cyclic in/in

K'SB pitch available from longitudinal
sti ck

xxiv

(
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i- Symbol Definition Unit__s

K6e Ratio between longitudinal stick deg/in

i_ motion and elevator deflection

K6R Multiplier on longitudinal cyclic in/in
pitch available from pedal displace-

{ ment

i K6RU D Ratio between pedal and rudder deg/in
de flection ,'

L.

' K6s Multiplier on longitudinal cyclic in/in
i" pitch and differential collective

_I available from lateral stick

K6's Lateral cyclic pitch/degree of deg/deg
- _ differential collective pitch

K% Wing stiffness in torsion ft-lb/rad

L_ Ko Coefficient of fuselage drag coeffi- i/red 3
cient equation to account for drag

due to sideslip

K1 Coefficient in fuselage drag coeffi- i/red 2 ,
cient equation

K2 Coefficient in fuselage drag coeffi- i/red
cient equation

K 3 Coefficient in fuselage lift coeffi- I/red
cient equation

K 4 Coefficient in fuselage lift coeffi- i/red 2
cient equation

K5 Coefficient in fuselage pitching I/red
moment coefficient equation

K 6 Coefficient in fuselage pitching i/red 2
[ moment coefficient equation

: K 7 Coefficient in fuselage side force i/red

!. coefficient equation

K 8 Coefficient in fuselage side force i/red
coefficient equatiJn

K 9 Coefficient in fuselage yawing moment I/red
coefficient equation

_ " XXV
o_
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. Symbo i De fini tion Units

KI0 Coefficient in fuselage yawing moment I/rad 2
coefficient equation

K20 Wing/body interference effects on C 8 i/tad

K21 Wing planform effects on C(.8 i/rad

K22 Wing planform and lift effects on CN8 i/rad

K30 Coefficient an nacelle drag coeffi- I/rad
cient equation

K31 Coefficient In nacelle drag coeffi- I/tad 2
cient equation

K32 Coefficient an nacelle lift coeffi- i/rad
cient equation

K34 Coefficient an nacelle pitching momenu i/rad
coefficient equation

K35 Coefficient an nacelle pitching moment i/rad 2
coeffi&ient equation

K36 Coefficient in nacelle side force i/rad

coefficient equation

K37 Coefficient an nacelle side force i/rad 2
coefficient equation

K38 Coefficient an nacelle yawing moment i/rad
coefficient equation

K39 Coefficient an nacelle yawing moment i/rad 2
coefficient equation

K40 Coefficient an nacelle yawing moment i/rad
coefficient equation

K41 Coefficient an nacelle yawing moment i/tad 2
coefficient equatzon

K42 Coefficient in fuselage lift coeffi- ND
cient equation

'k Unit vector in k direction --

Ls Nacelle shaft length from pivot to ft

spinner I

xxvi
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: Symbol Definition Units

,_ Rolling moment ft- ib

£ Distance from nacelle _ivot to ft

nacelle center of gravity

£' Horizontal distance from nacelle pivot ft
to aircraft component center of

gravity positive - positive forward
from pivot

j £AC Horizontal distance from horizontal ft
tail quarter chord tc wing aero-
dynamic center

£F Horizontal distance from pivot to ft
center of gravity of fuselage mass
element

£0 Wing root lift/foot ib/ft

zpA Horizontal distance from pivot to ft

center of gravity of pilot_' station -
positive forward from pivot

£w Horizontal distance from pivot to wing
mass element center of gravity

M Pitching moment ft-lb

m Pitching moment, or aircraft mass ft-lb or

slugs

M/'? Pitching moment/rotor thrust ft-ib/ib

mf Mass of fuselage structure slugs

mN Mass of one nacelle slugs

mw Mass of wing slugs

N Yawing moment _t-lb

NF Rotor normal force ib

N I Engine gas generator speed rev/min

N1 IND Engine gas generator indicator --

N_ Engine gas generatcr spe6d at sea rev/min _,
level standard, =tatic conditions

•

.. xxvii
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Symbol De finition Units

Nle IND Referred engine gas generator speed --
indicator

i
N-I Engine power turbine speed rev/min

N_I Engine power turbine speed at sea rev/min
level standard static conditions

P Body axes roll rate rad/sec J

PC lorizontal distance from wing leading ft
edge to pivot location

pN Nacelle axes ro1_ rate rad/sec

pR Nacelle wind axes roll rate rad/sec

p Body axes roll rate rad/sec

Q Body axes pitch rate or rotor rad/sec or

torque ib- ft

QIND Torque indicator ND

QM_%X Maximum engine torque available ib-ft

QN Nacelle axes pitch rate rad/sec

QR Nacelle wind axes pitch rate rad/sec

Q* Engine torque at sea level stan4ard ib-ft
static condition

q Body axes pitch rate or freestream rad/sec or

dynamic pressure ib/ft 2
L

qs Dynamic pressure of rotor slipstream Ib/ft 2

R Bod'_. _xes yaw rate or rotor resultant rad/sec or
force c"_ rotor _'adius ib or ft

RHP Rotor horsepower --

RN Nacelle axes yaw rate radt--ec

RR Nacelle wind axes yaw rate rad/sec

r Body axes yaw rate rad/sec

r Radius vector --

xxvii!
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"- S__mbol De finition Units "
&4

rn Landing gear tire radius ft ;

S Surface area ft 2
..

' SF Rotor side force ib
%

-- SHP Shaft horsepower -- .'

SHP* Engine shaft horsepower at sea level -- J
standard static conditions

T Rotor thrust Ib

TEA Engine referred turbine inlet deg :
temperature

(TIGE/TOG E) Ratio of the rotor thrust in grothnd --
effect to the thrust out of ground
effect

TI+T 3 Coefficients of curve fit equations ND
for rotor/rotor interference

t Time sec .

U Body axes longitudinal component of ft/sec

velocity at aircraft center of gravity

or rotor hub, wing, horizontal and
vertical tail velocities referred to '_
rotor shaft and local surface chord

axes, respectively

U' Body axes longitudinal component of ft/sec

velocity at rotor hub and wing aero-

dynamic center

"" UpA Body axes longitudinal component of ft/sec
velocity at pilot's station

•. V Total velocity ft/sec

" V t Rotor tip speed ft/sec

V' Resultant flow through rotor disc ft/sec

V, Non-dimensional rotor forward velocity ND

V Total velocity vector ft/sec

xxix
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• Symbol De finition Units

V Body axes lateral component of ft/sec

velocity at aircraft center of
gravity or rotor hub wing, horizontal

and vertical tail velocities referred
to rotor shaft and local surface

;_ chord axes, respectively

V' Body axes lateral component of .ft/sec :

velocity at rotor hub ana ",ring
: aerodynamic center

vi Rotor induced velocity ft/sec :

VpA Body axes lateral component of velo- ft/sec
city at pilot's station

V, Non-dimensional rotor induced vel_city ND

W.L. Fuselage water line position in.

W' Weight of aircraft components ib

WDTIND Fuel flow indicator --

W Body axes vertical component of velo- ft/sec

city at aircraft center of gravity

or rotor, hub, wing, horizontal and
vertical tail velocities referred to

rotor shaft and local surface chord

axes, respectively '
I

W' Body axes vertical component of ft/sec

velocity at rotor hub and wing aero-

dynamic center

WpA Body axes vertical component of velo- ft/sec
city at pilot's station

Xsubscrip t Longitudinal distance, measured ft
positive forward from nacelle pivot
along body axes

_Xsubscrip t Longitudinal force, measured positive ib
forward along body axes

Xaero Total longitudinal aerodynamic force ib
at center of gravity measured positive --
forward along body axes

xxx
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i Symbol De finition Units

C L ""-----

xsP rscript Longitudinal force, measured positive ib
sUDS cript

I forward along body axes

"- XNort h Longitudinal ground track velocity ft/sec

! Ysubscript Lateral distance, measured positive ft
-- along right wing along body axes

_Ysubscript Lateral force, measured positive along ib
L. right wing in body axes

_ Yaero Total lateral aerodynamic force at ib
• , ' center of gravity measured positive

along right wing in body axes

L ysprscript Lateral force, measured positive Ib

_- subscript alon&" right wing in body axes

YEast Lateral ground track velocity ft/sec

Zsubscrip t Vertical distance, measured positive ft
down nacelle pivot along body axes

_Zsubscrip t Vertical force, measured positive ib
down along body axes

Zaero Total vertical aerodynamic force at ib
center of gravity, measured positive

down along body axes

zsprscript
subscript Vertical force, measured positive ib

down along body axes

Zdown Vertical ground track velocity ft/sec

z Vertical distance from nacelle pivot ft

to center of gravity of aircraft

component, positive down from nacelle

pivot along body axes

Angle of attack tad

6 Angle of sideslip rad

' Vertical distance between wing fuel ft 1
_w'fuel center of gravity and wing mass

element certer of gravity !

xxxi
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S[mbol De finition Units

': _' Vertical distance between fixed ft
w 'fuei

nacelle center of gravity and wing
mass element center of gravity

"" _ !
w'w Vertical distance between wing center ft

of gravity and wing mass element

_ center of gravity

6 Control element (surface or stick) deg or in.

angular or linear displacement

- 6' Vertical distance between cargo center ftc
of gravity and fuselage mass element

center of gravity

6' Vertical distance between crew center ft_. CR
of gravity and fuselage mass element

center of gravity

6'F, Vertical distance between fuselage ft
center of gravity and fuselage mass
element center of gravity

6' Vertical distance between horizontal ftHT
tail center of gravity and fuselage

mass element center of gravity

; _STEER Nose wheel steering angle, positive deg
right

_VT Vertical distance between vertical ft
tail center of gravity and fuselage
mass element center of gravity

Wing or rotor downwash angle rad

_o Wing downwash angle at zero wing rad
angle of attack

_iLR Rotor/rotor interference angle, left rad
rotor on right rotor

EiR L Rotor/rotor interference angle, right tad
rotor on left rotor

ew Wing on rotor interference tad

Rotor sideslip angle or damping ratio rad or ND

_wl_w4 Wing damping ratio ND

xxxii
|
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S_,mbol De finition Units

Hw, fuel Horizontal distance between wing fuel ft
center of gravity and wing mass

element center of gravity

Hw,NF Horizontal distance between fixed ft
nacelle center of gravity and wing

mass element center of gravity

Hw, w Horizontal distance between wing ft , i
center of gravity and wing mass

element center of gravity

q Horizontal distance between cargo ft

c center of gravity and fuselage mass

element center of gravity
t

• qCR Horizontal distance between crew ft '_
center of gravity and fuselage mass

element center of gravity

nF Horizontal distance between fuselage ft
center of gravity and fuselage mass

element center of gravity

nHT Horizontal tail efficiency ND •

' Horizontal distance between horizontal ib
•. nHT

tail center of gravity and fuselage

mass element center of gravity

qVT Vertical tail efficiency factor ND

' Horizontal distance between vertical ft

"" nVT tail center of gravity and fuselage

mass element center of gravity

nTR Transmission efficiency ND

e Aircraft pitch or Euler angle or rad or ND

temperature ratio

et Wing twist angle tad

8.75 Rotor collective pitch angle at deg
three-quarter radius

Angle between the rotor shaft and a tad

line drawn through the nacelle center

of gravity from the pivot

r xxxiii
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Symbol De finition Units

Rotor advance ratio = V/?_R ND

: _s Tire sliding coefficient of friction ND ]
- when sliding sidewards (for concrete)

uo Tire rolling coefficient of friction ND
(for concrete) _,

_i Coefficient of rolling friction for ND
brakes

_Rl_R4 Terms in wing immersed area calcula- --
tion

p Ambient air density slug/ft 3

_ Fuselage sidewash angle rad

_h Ambient density ratio ND

_ Angle between freestream velocity and rad
:i rotor resultant force

• _D Engine response time constant sec .

TE Engine response time constant sec

_HT Horizontal tail effectiveness ND

TLA S Load alleviation system time constant sec

TVT Vertical tail effectiveness ND

Tp Lateral directional SAS time constant sec

_r Lateral directional SAS time constant sec i

Lateral directional SAS time constant sec
T_

_s Lateral directional SAS time constant sec

T Lateral directionai SAS time constant sec

Lateral directional SAS time constant sec
T_6r

T1 Rotor thrust zesponse time constant sec

T2 Rotor thrust response time constant sec

Alrczaft roll angle or Euler angle rad

xxxiv
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S_mbol De finition Units i
mm _ °

_p Rotor swashplate phase angle rad _

i _i_5 Functions in wing vertical bending -- -i
•" equations

× Rotor wake skew angle rad _

Aircraft yaw angle or Euler angle rad i _

._ _ Rotor or engine rotational speed rad/sec

Angular velocity vector rad/sec

' _ Natural frequency rad/sec _.
?

_wl_w3 Wing natural frequencies rad/sec

xxxv
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\ Subscripts
\
: A Avai iab ie

AC Aerodynamic center

ACT Actuator

AERO Aerodynamic force

a Ai ieron

B Longitudinal stick

c Cargo
i

CG Center of gravity

CR Crew

: C/4 Quarter chord

DUM Dummy variable

E Engine

EFF Effective

e Elevator or effective

F Fuselage

FAC Fuselage aerodynamic center

FUEL Fuel in wing

FUELcG Fuel center of gravity

FUS Fuselage

F' Fuselage minus landing gear

f Flap

GLAS Load alleviation system

GYRO Gyros copic

g Ground or gust

HL Left rotor hub

xxxvi
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Subs cril_ts

HR Right rotor hub

HT Horizontal tail

HTCG Horizontal tail center of gravity

,- IGE In ground effect

i Immersed I

L Left wing or rotor

LAS Load alleviation system

LE Left engine

LG Landing gear

L-L Rotor lead-lag

LN Left nacelle

LR Left rotor

p

LRH Left rotor hub

LT Left wing tip

LW Left wing

LW o Left wing referred to freestream

MAX Maximum

N Nacelle or natural frequency

NF Fixed portion of nacelle

NFCG Fixed portion of nacelle center of gravity

NL Left nacelle

NR Right nacelle

NT Tilting portion of nacelle

n Landing gear index, n=l left gear, n=2 right gear,
n=3 nose gear

OGE Out of ground effect

xxxvii
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Subscripts

P Power, nacelle pivot, or rotor polar moment of
inertia

POWER Power

PA Pilot station

R Right wing, rotor or rudder pedal

; RE Right engine

REQ Required

!

RIGID Rigid

RN Right nacelle

RR Right rotor

RRH Right rotor hub

RT Right wing tip

RUD Rudder

RW Right wing

RW o Right wing referred to freestream

S Rotor shaft, side, or lateral stick

SP Spoiler

STALL Stal 1

T Tail, total or wing tip

TH Throttle

VT Vertical tail

VTCG Vertical tail center of gravity

L W Wing

WAC Wing aerodynamic center

WCG Wing center of gravity

x Along the longitudinal axis, positive forward

xxxviii
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Subscripts

y Along the lateral body axis, positive out

right wing

z Along the vertical body axis, positive down

Denotes a vector quantity

Supe rs cripts

(c) Refers to cargo or payload weight

(CR) Refers to aircraft crew weight

•" F F use lage

F' Fuselage less landing gear

HT Horizontal tail

.. (HT) Refers to horizontal tail weight component

IGE In ground effect

LW Left wing

N Nacelle

NL Left wing tip at pivot

NR Right wing tip at pivot

RW Right wing

T Total of horizontal and vertical tail

VT Vertical tail

(VT) Refers to vertical tail weight component

W Wing

(W'FUEL) Refers to wing fuel weight

(Wf') Refers to fuselage weight component

(W'NF) Refers to weight of fixed portion of nacelle

(W' W) Refers to wing weight component

XXXIX
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Superscripts !

" Denotes an interim calculation or coefficient I

, in local wind axes i
i

''' Denotes an interim calculation

J

- Denotes average value i

* Denotes interim calculatLon or calculation in ;_

freestream wind axes

' Denotes an interim calculation

" + Denotes an interim calculation

^ Denotes a unit vector

xl
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- 1 .0 INTRODUCTION

The rising costs and diminishing availability of fossil

fuels, the increasing congestion at major airports, and the

growing need to reduce noise and air pollution are strongem

reasons for evaluating rotary-wing vehicles for the short-hau±
air travel market.

•- The low disc loadings of rotor configurations allow

vertical or short takeoff and landing for a relatively low in-
stalled horsepower. This power economy results in improved _ "

._ fuel efficiency and reduced air pollution. The capability for

V/STOL operation greatly reduces runway requirements and pro- !

• vides a means to alleviate air traffic congestion at airports.

"" The tilt rotor aircraft combines the V/STOL advantages of
the helicopter with the speed and altitude advantages of fixed

wing aircraft. In Reference 1 a study was made to define a tilt

" -- rotor aircraft capable of carrying i00 passengers over a 700

nautical mile stage length at minimum direct operating cost. The

configuration emerged as a 4-engined, 33905 kg (74749 ib) air-
. craft with a wing span of 25 meterq (82 ft), a rotor diameter

of 17._6 meters (56.3 ft) and a cruise speed of 349 KTAS. This
represents a very large increase in size for a tilt-rotor

vehicle compared to current (NASA-Army Bell XV-15) and past

(XV-3) tilt rotor designs. The question then aris,_s as to the
flying qualities of such a rotary wing vehicle and the impact

of operating large tilt rotors in projected terminal area navi-
gation systems.

This report presents the development of a mathematical
model which could be used in a piloted simulation of a large
tilt rotor aircraft. This is a model of the 1985 Tilt Rotor

Configuration originally planned for use on the NASA-Ames

Flight Simulator for Advanced Aircraft. The model could also
be used in research on advanced controllers for terminal a_'ea t

operation.

The aircraft selected for modeling was the design point
tilt rotor aircraft described in Reference 1 and detailed in

Section 2.0. The math model is full force, with all inertial

and aerodynamic terms included• The forces and moments

generated by the large, hingeless rotors are calculated from a

set of equations derived from a regression analysis of full-

scale test data on a rotor of similar design. Direct calcula-

tion of the rotor forces and moments in real time is not prac-

ticable because of the complexity of the equations required to

represent the flap-lag coupling effects of soft-in-plane hinge-
less rotors.

The aerodynamic interference effects of the rotor on wings

-_ and tails, the effect of the wing upwash on t..c rotor, and the

I-I
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interference of one rotor on the other in edgewise flight, are

represented. Turbine engine performance, dynamic response and

performance limits, both thermodynamic and mechanical, are in-
cluded.

The control system elements represented are pilot command,
three axis stability augmentation and a thrust management/

: governor system. Control system actuator dynamics _re included

as first and second order lags.

The effect of the tilting rotors and nacelles on the air-

craft center of gravity and inertias are calculated. Forces

and moments resulting from acceleration of the nacelles during
rapid tilting maneuvers are included.

The airframe c.g. and inertia representation permits the

location, inertia, and c.g. of major components of the aircraft
to be entered. All lengths, overall c.g. and inertias of the
aircraft are then calculated. _

Wing and nacelle aeroelastic effects are treated on a

quasi-static basis, i.e., coupling is through the aerodynamic
terms only.

The mathematical model is presented in detail in Appendix

E and derivations of important equations are also included in
the body of the report and the appendices.

1-2
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" 2.0 DESCRIPTION OF AIRCRAFT

The 1985 commercial 100 passenger tilt rotor aircraft is shown

.- in Figures 2.1 and 2.2. Table 2.1 lists the major dimensions
and characteristics of the aircraft.

The 1985 tilt rotor has a takeoff gross weight of 33,905 kilo-

grams (74,749 pounds). The rotors are three-bladed and are of

hingeless fiberglass composite construction. The rotor diam-

eter is 17.16 meters (56.3 feet) and the solidity ratio is 8

"" 0.089. In hover and low-speed flight, cyclic pitch control is

applied to the rotor to provide control power and trim. These

rotors are highly twisted (36 degrees) by comparison with

•- helicopter blades to provide efficient operation at high advance
ratio as well as in hover.

The rotors and forward rotor transmission tilt; however, the

engines, mounted outboard of the tilt package, remain stationary.

This arrangement does not require the engines to be requalified
for vertical operation and reduces the inertia of the tilt

package.

The aircraft has four engines, two on each wlng tip. The rotors

and engines are connected by means of a cross-shaft which provides

the torque transmission across the aircraft in event of engine

failure. The location of the engines outboard of the tilt package

provides easy access to the engine bays for maintenance or engine
removal.

The span of the aircraft is 25 meters (82 feet) measdred from

outboard of one nacelle to outboard of the other. The wing is

straight and upt_pered with a NACA 634221 section with a wing
setting angle of 2° relative to the fuselage. The wing aspect
ratio is 7.14.

The wing has full-span 30-percent-chord plain flaperons used as

both flaps and ailerons. A leading edge umbrella flap is pro-

vided which opens for hover and low-speed helicopter-type flight

to alleviate the rotor download on the wing. This device is

also used to ensure that wing unstalling at end of transition

occurs simultaneously on both wings.

The empennage T-tail configuration was selected tu reduce the

impact of rotcr downwash on the horizontal stabilizer in transi-

tion flight. The horizontal tail volume ratio is 1.47, and the
vertical tail volume ratio is 0.159.

The tricycle landing gear configuration provides good ground

handling characteristics and is retractable. The undercarriage

provides an overturning angle of 27 ° .

2-1
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TABLE 2.1

1985 COMMERCIAL TILT ROTOR - DIMENSIONAL DATA

WING :

AREA (REFERENCE) 747.5 FT 2

ASPECT RATIO 7.15

SPAN (BETWEEN ROTOR _L ) 73.1 FT ,

TAPER RATIO 1.00
r

CHORDS :

ROOT i0.23 FT

TIP 10 .23 FT -

MEAN AERODYNAMIC i0.23 FT

SWEEPBACK 0 DEGREES

DIHEDRAL 0 DEGREES

INCIDENCE :

ROOT 2.0 DEGREES

TIP 2.0 DEGREES

AIRFOIL SECTION:

ROOT NACA 634221
(MODIFIED)

TIP NACA 634221
(MODIFIED) i

FUSELAGE :

LENGTH 92.5 FT

DEPTH ii.5 FT

WIDTH 14 .75 FT

WETTED 3563 FT 2

2-4
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1985 COMMERCIAL TILT ROTOR - DIMENSIONAL DATA

(Continued) i.

NACELLES : !

-- __NGINE :

i LENGTH 8.58 FT

.. °

DEPTH 5.5 FT

WIDTH 3.0 FT
._°

WETTED AREA (PER NACELLE) 136. FT 2

• I
"-_ TILTING:

1

LENGTH 15 .5 FT

DEPTH 5.08 FT

WIDTH 3.42 FT

WETTED AREA (PER NACELLE) 122 FT 2

; HORIZONTAL TAIL:

AREA (EXPOSED) 211.5 FT 2

AREA (REFERENCE) 227.5 FT 2

SPAN 35 FT

ASPECT RATIO 5.38

TAPER RATIO 0. 625

DISTANCE (_/4) w to (c/4)gT 50.75 FT

CHORDS :

KOOT 8.0 FT

TIP 5.0 FT

MEAN AERODYNAMIC 6.62 FT

SWEEPBACK AT 0 PERCENT CHORD 9.75 DEGREES

DIHEDRAL 0 DEGREES

2-5
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1985 COMMERCIAL TILT ROTOR - DIMENSIONAL DATA

. (C0ntinue'd)

INCIDENCE :

ROOT 0 DEGREES

TIP 0 DEGREES

AIRFOIL SECTION: _,

ROOT NACA 64A010 (MODIFIED)

TIP NACA 64A010 (MODIFIED)

VERTICAL TAIL :

AREA (EXPOSED, EXCLUDES DORSAL) 210 FT 2

AREA (REFERENCE) 278 FT /

SPAN (REFERENCE) 20.67 FT

ASPECT RATIO i. 536

TAPER RATIO 0.482

DISTANCE (c/4)W to (c/4)VT 40.5 FT

CHORDS :

ROOT IS. 33 FT

TIP 8 •83 FT

MEAN AERODYNAMIC 14.1 FT

SWEEPBACK AT 0 PERCENT CHORD 39 DEGREES

AIRFOIL SECTION NACA 64A008 (MODIFIED)

CONTROL SURFACES :

FLAPERON :
J

AREA (AFT OF HINGE) 150.4 FT 2

SPAN (LENGTH EACH SIDE) 24.5 FT :

CHORD (% OF WING CHORD) 30

SWEEPBACK OF HINGELINE 0 DEGREES

2-6
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i 1985 COMMERCIAL TILT ROTOR - DIMENSIONAL DATA ,
) (Continued)

SPOILERS :

5

, AREA 63.2 FT 2

SPAN (LENGTH EACH SIDE) 24.5 FT

CHORD (% OF WING CHORD) 12.65

J
POSITION OF LE (% OF WING CHORD) 66.0

SWEEPBACK OF HINGE LINE 0 DEGREES

• !
- LEADING EDGE UMBRELLA:

; AREA (PLAN) 102.8 FT 2

CHORD (% OF WING CHORD) 18.6

SWEEPBACK OF HINGE LINE 0 DEGREES

ELEVATORS :

AREA (AFT OF HINGE LINE) 62.1 FT 2

CHORD (% HORIZONTAL TAIL CHORD) 33

SWEEPBACK OF HINGE LINE 3.0 DEGREES

RUDDER:

AREA (AFT OF HINGE) 49.3 FT 2

CHORD (% VERTICAL TAIL CHORD) 25

SWEEPBACK OF HINGE LINE 26.7 DEGREES

ROTORS :

NUMBER OF BLADES (PER ROTOR) 3

DIAMETER 56 •3 FT

BLADE AREA (PER BLADE) 70.1 FT 2
i

GEOMETRIC DISC AREA (TOTAL) 4978 FT 2

SOLIDITY .089 i

i
: I

i :
2-7 , :
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1985 COMMERCIAL TILT ROTOR - DIMENSIONAL DATA

(Continued)

AIRFOIL SECTION:

ROOT VR- 7

70% RADIUS VR-8

89% RADIUS VR-9

TIP VR-9

2-8
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i 3.0 EQUATIONS OF MOTION
&,..

This section presents the derivation of the airzrame equations

! of motion and the simplifications that were made in order to
I obtain the final equations as presented in Appendix E. The

'-" treatment accounts for all six rigid-body degrees-of-freedom

including the effects of the tilting nacelles and rotors. The

i principal features of the derivation are:

o Assumption of X-Z plane of symmetry

. o The basic equations are derived about the

instantaneous center of gravity of the air-

craft since the center of gravity is strongly

dependent on nacelle incidence.

o Rotor and engine gyroscopic terms are included.

o The wing elastic degrees of freedom do not

couple inertially. The coupling occurs only

through the aerodynamic terms.

o Wing aeroelastio effects are not included in

the center of gravity calculations.

3.1 AXES SzS%".M

A set of right-handed orthogonal axes OXYZ is placed at the
center of mass of thee aircraft and is fixed in the aircraft

such that C{ lies in the lateral plane of syn_,etry and is

positive Xorward parallel to the fuselage water line zero. The

remaining axes are placed as shown in Figure 3. i.

The orientation of the aircraft is defined with respect to a

set of earth-fixed axes C X'Y'Z' With the axes OXYZ initially

parallel to C X'Y'Z', the aircraft is yawed to the right about

0 through an angle %, then pitched up about OZ through the

angle 8, and finally rolled right about OX through the angle _.

If V and __ are the aircraft velocity and angular velocity
vectors relative to the earth-fixed axes, the projections of

these vectors on the moving axes are U, V, and W for the

components along OX, OY, and OZ, and P, Q, and R for the angu-
lar velocity components.

Thus,

V = Ui + Vj + Wk (3.1)

__ = Pi + Qj + Rk_ (3.2)
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where the unit vectors i, j, and k lie along OX, OY, and OZ.

3.2 AIRCRAFT GROUND TRACK

The components of V relative to the earth-fixed axes are ob-
tained in terms of-U, V, W and _, 8, _ as, (See Reference 2 ),

dX' = U cos e cos _ + V(sin ¢ sin e cos _ - cos # sin '_)dt

+ W (cos _ sin 8 cos _ + sin 8 sin _)

dY '
d--t= U cos 8 sin _ + V(sin # sin 8 sin # + cos _ cos %) (3.3)

+ W (cos # sin 8 sin _ - sin # cos _)

dZ '
= -U sin 8 + Vsin # cos % +Wcos _ cos 8

[[ntegration of these eql_ations gives the aircraft ground track.
A further relationship may be obtained between the rate of
change of the Euler angles (%, e, _) and the components of the
angular velocity in the moving axes system, viz,

_ (RCOS _ + Qsin _)sec e

= Q cos $ - Rsin _ (3.4)

$ - P + _sin e

3.3 FORCE EQUATION

The total external force, F, acting at the aircraft center of
mass is given by

d (mV) _ m + a x (3 5)_F- _t - -
5V

where m is the mass of the aircraft and --= is the rate of
5t

change of V with respect to the moving reference frame OXYZ,
i.e.

6V
,A _A

---"_ _ * vi + wk (3._I_t -- --

If F has components Fx, Fy, and F z along the respective axes
the_

3-3
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F= Fx _i+ + Fz _k= m _i+ Vi + _ + _ j

P Q R !

U V W

thus

Fx = m (6 + QW - RV)

Fy = m (V • RU - PW) (3.V)

Fz = m (& + ;v - Ou)

The forces Fx, Fy and F z are given by

Fx -- XAERO - mg sin e

(3.8)
Fy = YAERO + mg sin _ cos e

Fz = ZAERO + mg cos _ cos e

Where XAERO, etc., are the components of the total aerodynamic
force acting at the aircraft center of mass.

Substituting equations (3.5) in equations (3.7), the follow-
ing equations are obtained for the aircraft accelerations,

XAERO6-
m g sin 8- QW + RV

_ YAERO + g cos e sin # - RU + PW (3.9)m

• ZAERO
W " -- + g cos _ cos _ + QU - PVm

3.4 MOMENT EQUATION

The derivation of the equations for the total moment acting
about the aircraft center of mass is complicated bv the fact

that the center of mass changes position due to the tilting
nacelles. Thus the centers of gravity of the principal air-

craft component masses of the wings (mw), fuselage (including

tails) (mf), and nacelles (raN), move with respect to the ref-
erence axes OXYZ placed at the instantaneous overall center of

gravity of the aircraft. The equation of motion for such a
mass element will first be obtained and the total moment found

by adding the contributions of all the element q:

3-4
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3.5 EQUATION OF MOTION FOR A MASS ELEMENT

With reference to Figure (3.1) O'xyz is a right-handed set of

axes placed at the center of gravity of the representative mass.

The axes are parallel to the set OXYZ. The mass, m, rotates

about its own center of gravity with angular velocit;" __ which,

in general, differs from _ the angular velocity of the aircraft.
If r is the radius vector-from O to O' then the velocity of the

center of mass of the element is

V = 6r + _q x r (3.10)

- - - i

" The angular momentum of this mass about O is

h = m (r x V) + ho (3.11)

where ho is the angular momentum of m about its own center of

mass and is given by

ho = Y _

where_

I = Ixx -Ixy -Ixz

Ivx Iyy -Iy z (3.13)

-I;x -Izy Izz

and Ixx, etc., are the moments and products of inertia of the
mass about O'xyz.

The total moment, G, about the aircraft center of mass is given

by

dh 5h
G ..... + 2 xh
- dt _t - -

Using equations (3.10), (3.11), and (3.12)in (3.14), the moment
be come s
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which reduces to

G = 2m2 r. + mr x _ + m _=- (r.r) -mr _" -_=6n (__.16)
.... _t _ _t -- - -- _t i

-2m _ (l_..r)-m(r..q)(axr) + I _-_--+a x i __---- _t --

The only masses that possess angular velocities different from
that of the aircraft are the nac@lle_,, which are free to pitch

about O' with angular rate i = ___IN . Thus _w may be written '

generally as d_
^ ^

__ = P_ + (O + IN) j + R k (3.17)

Now, with r = X__ + Y_ + Z_,_ where X, Y, and Z are the in-
stantaneous coordinates of the individual mass center relative

to the aircraft mass center, the "_arious terms of equation

(3.16) are, in component form,

_r
r. - - XX + YY + ZZ
-- _t

62r ^ , ^

r x 6t? - (YZ-ZY)i- (XZ-ZXlj + (XY-YX)k

6n_
(r.r) = (X2 + y2 _ Z2) (_ + Q_ + R_)

(3.18)

6t ....

6n
xP z_r.-== + YQ+

6t

_.r = XP + YQ + ZR

(r.n) (_]xr) = (XP+YQ+XR) (CZ-RY)i-(PZ-PC<)i+(PY-XQ)

(Zxxg-ZxzR)+ + (Izz -Ixzg)
_t -- --

A

__ X(f,__) = (QR Izz-QPIxz-aQIyy-R[NIyy)i

-(PR Izz-p2Ixz-PR Ixx + R21xz)_

A

+(QR Ixz+PQIyy + P[NIyy - PQ Ixx)k

where, in the last two terms, the products of inertia Ixy and

Ty z are zero flora symmet±y considerations.

Substituting. the above relations into equation (3.16) and
noting that Y" and _2 are always zero (no lateral motion of th,
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individual masses) the following expressions are obtained for

the components of the moment G = _L_ + &M_ + &Nk:

&L = P[ixx + m(X 2 + Z2)] - (R+PQ)[Ixz + m XZ]

+ RQ[Izz-Iyy+m(y2-z2) ] + m YZ (R2-Q 2) - lyyR IN

+ m (YZ-2XYR - 2XZR + 2ZZP - XY (Q - PR)) _ "
!

l,M = Q [Iyy+m(X2+Z2)] - (R2-p 2) [Ixz + mXZ] (3.19) i

+ PR [Ixx-Izz + m(Z2-X2)] + Iyya N

+ m [XZ-XZ + 2Q (ZZ+XX) -XY (P+RQ)+xz (PQ-R) ]

_N = P. [Izz+m(X2+y2)] - (P-RQ) [Ixz+m XZ] (3.20)

+ PQ [lyy-!xx + m (X2-y 2 )] + IyyP IN

+ m [2XXR - YX - 2XZP - 2YZQ - YZ (Q+PR)+XY(Q2-P2)]

Summing the rolling moment equation:

L = IXX P-Ix_ (_+PQ) + {Izz-Iyy)RQ

o, ,e
+ mN(R2-Q2)(ZNR-ZNL)Y N + mN Y_,i(ZNR-ZNL)

_2Q( Na_  L)y a + k LZ  L)+ + (3.21)

ZNLZNL)-(Q-PR) (XNR-X_L) YN}+ 2mfZf (PZf -
N

RXf) + 2mwZw(PZ w - ._Xw)-R Iyy ([NL + INR)

where Ixx, IXZ, IZZ, and Iyy are the inertias of the aircraft

about its center of gravity, and the subscripts f, w, NL and

NR stand for fuselage, wing, left nacelle and right nacelle.

The remaining symbols are defined in the List of Symbols.

Similar expressions are obtained for the pitching moment and

yawing mcment. In the interests of brevity the remainder of

the discussion will be limited to equation (3.21).

Evaluation of the terms of the rolling moment equation indicate

that this equation may be simplified considerably without a

significant change in accuracy. For example, terms containing
(XNR-XNL) may be dropped because XNR is normally identical to
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XNL, i.e. the nacelles are raised or lowered together at. the
same rate. Equation (3.21) may thus be written

L=IxxP-Ixz(R+PQ) + (Izz-Iyy)RQ + mNYN(XNR-ZNL) (3.22)

where the last term has been retained in consideration of the

high differential nacelle accelerations encountered during hover
maneuvers.

From the relationships presented in Appendix C the last term of
Equation (3.22) may be rewritten as

-£mNYN [_NR cos (iNR-A) + i_L sin (iNL-I)
(3.23)

-i2NR sin (iNR-I) - [NL cos (iNL-I)]

which may be approximated to

-£mNYN [_NR cos (iNR-i) - INL cos (iNL-l)] (3.24)

since the nacelle rates appear as squared terms.

"Similar treatment of the pitching moment and yawing moment

equations results in the following final form of the moment

equations•

= _- CR+PQ) + (IZ RQLAZRO IXX" IX_ Z- Iyy )

-£mNYN [[NR cos (iNR-I) - [NL cos (iNL-I)]

MAERO = IyyQ- Ixz/R2-p2) + (Ixx-Izz)PR (3•25)

+ _NR Yo + _mN [XR cos (iNR-X) - ZR sin (iNR-X) ]_

+ _NL [Iyy o + _mN [XL cos (iNL-_) - ZL sin (i2;L-,%)]_

NAERO = Izz R-Ixz (P-RQ) + (Iyy-Ixx)PQ

+ _mNYN [[NR sin (iNR-I) -[NL sin (iNL-X)]

where the moments LAERO, MAERO, and NAERO represent the sum of
the aerodynamic moments and rotor/engine gyroscopic moments

about the aircraft center of mass• I_y O is the nacelle pitch

inertia referred to the nacelle-fixed axes system described in

Appendix C. Equations for the aircraft inertias are also

presented in that Appendix•
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3.6 EQUATIONS OF MOTION FOR NACELLES

The equation of motion for a nacelle is required in order to

obtain the moment exerted by the nacelle on the wing ti_ at

the pivot. This moment is then used in the equations for wing
twi st.

The angular momentum of a nacelle about its pivot point is
given by

hp = (r-_p) x mNV + hoN (3.26)

= mn (rxV) + ho - mn_ p x V

where r is the radius vector from aircraft c.g. to nacelle

c.g.

V is the velocity of the nacelle c.g.

h0N is the angular momentum of the nacelle about its
own c. g.

mN is the nacelle mass

and _ is the radius vector from aircraft c.g. to nacel_e
pivot

The term mn (rxV) + hoN is the angular momentum of the nacelle

about the aircraft c.g. (= h_G).

i.e. h_p = h__NG - mN( _ x V)

The moment about the pivot is

Gp = _dh-p = --dhN _ mn __d ({p X _V) = G__G - ::G_ (3.27)
-- dt dt dt

Since the quantity GNg has already been obtained (equations
(3.18), (3.19), and-(3.20)), only the remaining term needs to
be evaluated.

_G_ = m N atd---(_pxV) = mN_t x V_ + {p x _t + _({p x _V)
(3.28)

=mN _ x + axr + rp x
6t - - _t

+ n x x--_-- + _ x
-- L_t --
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Expansion of these terms results in the following expression

_ --m_ x - + _ . r__ . + r,x +-- 6t -- i

-r rp. -+_ -. - 2-=- %. _)- _-_ - _-_ _t - (3.29)

+ Ep . - (£p.a)(axr)

We require only the j component of this vector in order to ob-
tain the nacelle pivot pitching moment.

The components of the vectors _p, r and _ are
A A A a A A

= xp!+ YNJ+ Zpk_= - XCG& + YNi- ZCG&
^ ^

=_= XNi+ YN31+ ZN_
A A

= Pi + QI + Rk

Noting that the j components of 0_rp, _r_= are zero (since YN is

a constant), the above expressio6ntyie_s

AM = m N XNZcG-ZNXcG + ZcGXN + ZNXCG + pQ YNZN
(3.30)

- RQ XNYN}

Combining this equation with Equation (3.19) and using the

transformations given in Appendix C, the final equation for the
right-hand nacelle pivot actuator pitching moment becomes, after

some simplification,

_qNR=-XNR YYo + i2mN

+(R2-p2)sin(iNg-:..) Cos (iNR-,k -(R2-p 21 Izz O sin iNR cos iNR

mN[ X )]
- Iyy o Q + £ -- AERosin(iNR-I) + ZAERO cos (iNR-I

+ (3.31)
MNRAERO

where MNRAERO includes the moment resulting from nacelle aero-

dynamic loads and the rotor gyroscopic moments. The terms
XAERO and ZAERO are, respectively, the coral aircraft aerody-
namic X and Z forces.

3-10
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The corresponding equation for the left nacelle actuator moment
is obtained by substituting -YN=YN and changing the R subscript Ito L.

3.7 DETERMINATION OF ROTOR GYROSCOPIC MOMENTS

The gyroscopic moments are most readily obtained as follows.

A set of axes O"x'y'z' is taken at the rotor hub (rotor c.g.)
Associated

parall_l to the nacelle-fixed set of axes OXoYoZ O. J'with each axis are the corresponding unit vectors i' and

k'. The angular velocity of the rotor with respect to these
axes is the vector

w_ = _R_' (3.32)

where _R is the rotor rotational speed.
I

The angular momentum of the rotor with respect to its c.g. is

wilere & is the inertia matrix IIRx' IIRy,IRz

the off-diagonal terms being zero since the axes O"x'y'z' are

principal axes of inertia of the rotor and hub.

In component form the angular momentum of the rotor is

A r A

h_o = IRy,_R i = IRQEi' (3.34)

With respect to the inertial axes OYXZ, the components of h_o
are

h-o = IR'qRC°S iN_--- IR_Rsin i_4__ (3.35)

The hub moment is therefore given by

6t 6t

where _--= P__ + Q_ + __ (3.37)

Substitution of equations (3.35) and (3.37) into equation (3.36)

results in the following equations for the rotor gyroscopic
moments.

3-i1
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Lgyro = IR_ R cos iN - IRn R (IN+Q) sin iN (3.38)

M = IRPn R sin iN + IRR_ R cos iN (3.3g)
gyro

Ngyro =-IR6 R sin iN - IR_ R (IN+Q) cos iN (3.40)

The above terms appear in the Computer Representation (Appendix I

E) as additions to the rotor aerodynamic forces and moments.

3-12
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4.0 AIRFRAME AERODYNAMICS

This section presents the mathematical equations and represen-

tations of the aerodynamic data for the aircraft without rotors.
The contribution of the rotors is described in Section 5. The

overall airframe aerodynamics are obtained from the following
components :

(a) Fuse._.age

(b) Wings

(c) Horizontal Tail

(d) Vertical Tail

(e) Nacelles

The data and equations for each of the aerodynamic components

are discussed below, together with the substantiating methods.
The aerodynamic data are presentcd in local wind axes. Reso-

lution to aircraft body axes is accomplished as described in

the mathematical model (Appendix E). Where required, the

equations have been written so as to be applicable over the

entire range of angle of attack +180 degrees.

4.1 FUSELAGE

The aerodynamic lift, drag, and pitching moment coefficients

of the fuselage were estimated using the methods of Reference 3.

The forces and moments are referred to the point on the fuse-

lage corresponding to the wing quarter chord position. This
reference point was selected in order to minimize the number of

force and moment transfer equations in the mathematical model.

Wing-to-body carryover effects have been included in fuselage
loads.

The equations for the fuselage forces and moments are:

Lift: CLF = K42 + K3SinsFCOS_F + K4Sin_FCOSsF I

Sin_FCOSSF I

Drag: CDF -- CDOF(I + Ko I_FI3)+K2(sin_FCos_F)2+ K1

ISinsFC°S_FI + _CDLG

Side Force: CYF K 7 SinSFCOS_ F + K 8 SinSFCOS Z S_._FCOS_2FI

4-1
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Pitching Moment: CMF = CMo F + K 5 SinsFCOSs F + K 6 SinsFCOS_FI

SinaFCOS=Fl + _CML G

Yawing Moment: CNF = CNo F + KgSinBFCOS_F + Kl0Sin£FCOSSFISin6FCOS£F" I

i

Rolling Moment: CaF = 0

LF

_F = Tan-II_jCLF;w_ - 1 Z
where etc.

PVFus SU

= 2 etc.
6F = Tan CMF 1 PVFu S SwC_q

and &CDLG, _CMLG, are the landing gear contributions to fuse-
lage drag and pitching moment coefficients, when the landing

gear is extended.

The fuselage forces and moments are then resolved into body
axes at the aircraft C.G.

4.2 NACELLES

The forces and mom_.nts acting on the nacelles were estimated
using the cross-flow methods of Reference 4. For convenience

the resulting forces and moments are referred to the rotor hub,

so that the_ may be added directly to the rotor forces and
moments. The following equations are for the forces and moments
on two nacelles:

= K 3 sin cosCL N 2 _N aN

CDN = CD + K301_NI + K31 _N z
ON

= CMON 1CMN + K34 sin _N cos SN + K35 sin =NCOS _NIsin _NCOS aNl

CYN = K36 sin SN cos _N + K37 sin _N cos _NIsin _N cos _NI

CNN = CNo N + K38sinSNcos8 N + K39sin_N cos _Nlsin_ N cos _NI

CZN = 0
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The nacelle forces and moments in nacelle axes are:

AX_ = qN Sw[-CD N cos aN + CLN sin aN - CYN sin 8N cos aN] {

= - sin 8N] 1_¥N qN Sw[Cy N cos 8N CDN

1

_Z_ = qN Sw['CL N cos aN - CDN cos SN sin aN -CYN sin SNsin _N]_

_N = qN SW bw[-( I CMN sln" 8N cos aN - CNN sin SNlg

1
_a_ = qN SwCw[CaN cos _Nlg

= - CMN 8N cos SN] _

4.3 HORIZONTAL TAIL

Aerodynamics of the horizontal tail were obtained using the
methods of Reference 3 in combination with test data. The

horizontal tail includes a plain elevator.

The angle of attack of the horizontal tail, including inter-
ference effects, for zero elevator deflection, is

_HT = Tan - rL__ j

where _ is the total downwash at the tail due to wing, rotor

and ground effects and iHT is the tail incidence angle.

The effect o. elevator deflection on the effective tail angle
of attack is introduced through the elevator effectiveness

parameter, rHT, which is a function of the elevator and hori-
zontal tail areas. Thus the effective horizontal tail angle of
attack is

_eHT _HT �_HT_e

where 6e is the elevator deflection.

The tail downwash angle, _, depends on wing angle of attack and

on rotor slipstream deflection. At a given rotor angle of
attack, the slipstream deflection is a function of rotor thrust

coefficient, CTS, where the coefficient is based on the slip-
stream dynamic pressure. Figure 4.1 presents data on downwash
angles measured during tests on a tilt rotor wind tunnel model
(Reference 5). As can be seen, the downwash at low values of

thrust coefficient is the same as the value of the power-off

4-3

l

J

I !

1977016150-065



D238-I0002-I 1
I

12

W

_ NACELLE INC_ ZE

__ / 67"5°_ FUSELAGE A_( LE
) Q _ OF ATTACK

_ 4 ........
o

n

0 .2 .4 .6 .8 1.0

ROTOR THRUST COEFFICiE;_, CTs

Figure4.1 Variation of Horizontal Tin7 Downwash Angle with Thrust Coefficient

wing downwa_h (CTs = 0). Above values of CTS in the neighbor-

hood of CTS=.5 the downwash increases with increasing thrust
coefficient. The values in the increasing portion of _ vs CTs

were found to correspond approximately to the slipstream deflec-

tion angle _-p. Therefore, the approach adopted in the mathe-
matical model was to test if the rotor slipstream downwash

([p) exceeded the wing downwash and, if so, to use the computed
slipstream downwash value as the tail downwash angle. Other-
wise the wing downwash value was used.

Thus if

_ /_ (_w _AC _

then ¢ . cp(1-GEF)
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otherwise

In these expressions ._o is the wing downwash angle at zero wing
angle of attack, d_ Is t2_e downwash derivative, zAC is the

d_

distance from the wing to the tail aerodynamic ce_ "ers, and

£AC W is the familiar downwash lag term. In general, the '
de

quantities _o and _ depend on the average of the left and
right flaperon deflections. The effect of differential deflec-

tion of aileron/spoiler in producing an asymmetrical downwash
field at the horizontal tail was not included because of the

small contribution this makes to total aircraft rolling moment.

The term (1-GEF) in the above equations is the ground effect

factor. This quantity was obtained from Reference 2 and is a
function of the wing span and height of the horizontal tail

above the ground (Appendix E, Page E-42). This factor, when

multiplied by the downwash which would be found out of ground
effect, yields the downwash in ground effect. Ground effect
is discussed in more detail in Section 8.

The lift and drag forces acting on the horizontal tail are re-

quired over the complete range of angle of attack -180 ° to

+180 °, since the tilt rotor can fly backwards. The following
sketch shows the schematic variation of lift and drag coeffi-

cients over this range plotted as a function of the effective

horizontail tail angle of attack, _eHT"

4-5
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i c_ _+ ///_+

-90°_ ° . a+ 180 o

-180

A

CLaa-CL a_

e

The angle of attack for CL,,- is deneted by eHT + and is then'I"MAY
value of the effective angle o7 attack at the stall less 2
degrees i.e.

_2°) +
aHT+ = (aHTsTADL _HT e

Similarly the angle of attack for stall at negative angles of
attack is

^

aHT - = -(aHTsTAL L -2 o) + _HT_e

The slope of the lift curve within this range of positive and

negative angles of attack is given by

CL_ " CL_H T(aa_

where ag/a is the ratio ¢f tail lift-curve slopes in and out of
ground effect, and _'I-M---'-Iis the Prandtl-Glaue_-: correction

factor for the effect of Mach number on lift-curve slope.

4-6
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Within this region on the lift curve the value of lift coef=i -

cient is given by CLHT = CL_ _eKT and the corresponding drag

coefficient by
C2

. . LHT
- +

CDHT CDoH T _AR HT eHT

. After stall angle of attack is passed the lift is assumed to

fall linearly to zero at _e = +90°"

In these regions the lift is given by ,:

CL_ = CL_ _. (+_90-=eHT) i

(+_90- 1Q

Where the appropriate signs are taken depending on the sign of

- _eH T •

. The corresponding drag is obtained by assuming a linear varia-

tion of drag from the value of CLMAX to a value of CD = i.i

(flat plate normal to stream) at _eH T = 90 °. Thus

CLHTsTAL L CLs sHT+_

CD = + C 2
HTSTAL L CDOHT LHTsTAL L

.AR HT eHT

and

+ - (1 )CDH T = CDHTsTAL L (aeHT I-CDHTSTAL L

If the effective angle of attack of the horizontal tail exceeds
+90 ° the tail will point trailing-edge first into the relative

wind. Under this condition early stalling is precipitated be-

cause of the sharp "leading edge" and blunt "trailing edge"
In order to represent this, it was assumed that the attainable

CLMAX of the tail under these conditions is half that occurring
in normal flight.

Thus if 90 ° < < (180 - i _HT_)
SeHT --

1 a •

or (-180 + _ SHT+; <--SeHT < -90°

4-7
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and similarly for the range -180 ° <_ _eH T < (-180 + .5 _HT+)

CLHT = CLu (SeHT + 180 °)

CDH T = CDOH T + C_HT
_ARHT eHT

, The above equations define the variation of tail lift and drag
over the entire range of angle of attack. The tail pitching
moment is not computed since it makes only a small contribu-

tion to the total aircraft pitching moment.

4.4 VERTICAL TAIL

The aerodynamic forces and moments acting on the vertical tail

were estimated using the methods of Reference 3. The angle of
attack of the vertical tail is given by

ivVTa = - Tan -1, + BF _
VT L/u 2VT+W..V, I

where uVT, vVT, and wVT are the components of the velocity at
the vertlcal tail aerodynamic center as given in Appendix C.

The term 6F [dc_ is the sidewash correction for the presence
,dS

of the fuselage.

As in the treatment of the horizontal tail, the effect of

rudder deflection is obtained using a rudder effectiveness

parameter TVT. Thus the effective angle of attack of the
vertical tail when the rudder is deflected is

aev T = aVT + rVT 6RUD

The treatment of the vertical tail aerodynamics through the

complete angle of attack range -180 ° to +180 ° then follo%_ uhe
same lines as that for the horizontal tail aerodynamics p .-

vious ly described.

The vertical tail forces and moments in body axes are then ob-
tained from:

VT [_CDvT
XAERO = qSvTnVT cos(_vT-_)cos(sHT-iHT)

- CYvTsin(_VT-:)cos(_HT-iHT _

4-9
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VT _ [CYvTCOS ) sin (_VT__YAERO = qSvTnVT (BVT-: -CDvT

VT

ZAERO = qSvT_VT _CDvTCOS(SvT-_)sin(aHT-iHT)-CYvTsin(SVT-_)

sin(_HT-iHT) ]

VT VT VT

MAERO = ZAERO (XcG-XvT) + XAERO (ZvT-ZcG) _
;L

VT VT ;

NAERO = -YAERO (XcG-XvT)

VT VT

LAERO = - YAERO (ZVT-ZCG)

4.5 WING AERODYNAMICS

The treatment of the wing aerodynamics is the most complex of
all the components. Because wing flexibility must be repre-

sented, each wing panel required a separate treatment. The

approach adopted for simulation purposes was first to obtain
the aerodynamic forces and moments on the complete wing con-

sidered as rigid and uninfluenced by slipstream interference
effects. With this data as a basis, the effects of elastic
deflection were introduced as an increment in the effective

angle of attack of each wing panel and the rotor slipstream

interference was then calculated. This approach is described
in detail below.

4.5. i. BASIC WING AERODYNAMICS

The basic wing lift, drag and pitching moment coefficients for
the wing in the presence of the fuselage rotors-off, were cal-

culated using the methods of Reference 3. This data is appli-

cable to low speed flight. Corrections for Mach number effects
are introduced through the Prandtl-Glauert factor _-_T. Be-

yond stall angle of attack, the lift, drag, and pitching

moment curves are extended linearly to +90 ° angle of attack in
order to provide a representation of wing behavior at low !
transition speeds when wing angles of attack approach 90 Q. The

data was calculated for the complete range of flaperon settings.

The complete wing basic lift, drag, and pitching moment data
also applies to each individual wing panel provided the data

is obtained at the appropriate panel angle of attack. This
approximation is acceptable if the angles of attack of each

wing panel are not substantially different. This condition is
normally fulfilled.

4-10
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In addition to the above data, the effects of spoiler deflec-

tion on panel lift, drag, and pitching moment are required.
These were estimated using the data of Reference 3. As can be

seen from the equations presented in Appendix E the spoiler

effectiveness is strongly dependent upon flaperon deflection,
a result of the spoilers being slot-lip spoilers.

4.5.2 ROTOR SLIPSTREAM INTERFERENCE

Before the basic wing aerodynamic data can be utilized in the
calculation of the wing forces, the effects of the rotor slip-
stream must be calculated. The calculation procedure presented i_

here has been developed and used at Boeing for some years, and

gives acceptable agreement with wind tunnel test data on a wide
variety of both tilt rotor and tilt wing configurations.

The method uses momentum theory to obtain the direction and

speed of the rotor slipstream in the neighborhood of the wing.

From this the effective angle of attack of that part of the
wing that is immersed in the slipstream is calculated. The

lift, drag, and pitching moment on the wing are then calculated

for this Jngle of attack as if the entire wing were immersed.
The area of the wing immersed in the slipstream is now computed _

and, using the ratio of the immersed to total wing area, the
forces acting on the immersed portion are approximated.

At the angle of attack of the wing outside the slipstream, the

wing forces and moments are obtained from the basic wing data

as if no slipstream effects were present. These forces are
then scaled by the ratio of unimmersed to total wing areas to

obtain approximately the forces acting on the unimmersed wing. _

The sum of the approximations to immersed and unimmersed wing _
forces is now formed. This sum is then multiplied by a correc-
tion factor to obtain the final forces.

This correction factor is obtained from a consideration of the

mass flows associated with the ro%or-wing combination. In the

following outline of the method only one rotor is considered.

From the following sketch, which shows the forces acting on
the rgt_r, the inclination of

t_

T F

V_
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the resultant force on the rotor to the freestream direction

is given by

The resultant force on the rotor is

I

R = /T 2 + NF 2 + SF 2
I

where T, NF and SF are the thrust, normal force and sideforce,

respectively.

[

The mass flow through the disc is

m = p A V'

where A is the disc area and V' is obtained from the induced

velocity triangle at the disc plane.

V q = /'(VO + V i COS _)2 + (_ sin T)_

The resultant force on the rotor is related to the mass flow

by

R = 2m Vi = 2pA V' v i

From these equations the following quartic equation is obtained
for the induced velocity at the dl_c.

v_ + 2v.v_ cos _ �v_v} = 1

where the nondimensional notations

vi Vo

have been introduced.

4-12
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This equation is then solved for v, and the direction of the

slipstream just behind the rotor disc is calculated from

_P = Tan-1 Iv*sin _ 1LV.COs _+v

The rotor thrust coefficient CTs is defined as

T

CT s = (q + T)A
NOTE: Because the rotor diameter

to wing chord is large the
slipstream is considered

with T = R cos (r - aR) to be uncontracted in the

1 _ 1 V_R vicinity of the wing.and q = 2 _V2 4

= cos(_-_ R)
then CTs

cos(_-_R) �V_

4

The aspect ratio of the slipstream-immersed wing area is given

A_i= __
c 2

where Si is the immersed area calculated by the method de-
scribed in Appendix D, and c is the wing chord.

The lift on the wing, if the slipstream were absent, is obtain-
ed by calculating the effective angle of attack of the wing

-i ww ]

_0 = sin + et

w W

w_ere w , uw are the velocities at the wing aerodynamic centerW, , o . 0

and _t is the elastlc twlst at the point. The llft coefficient
(C*) for this angle of attack is obtained from the aerodynamic
da_a for the appropriate flaperon/spoiler deflection.

Similarly the lift (C_) and drag !C_) coefficients of the wing
in the slipstream (assuming wing as completely immersed) are
obtained fromthe aerodynamic data at the angle of attack

as = _O--C

The total lift coefficient of the wing with slipstream is
the re fore

4-13
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CLs = K_[_ (C_' cos ¢- C_ sin ¢)+ C{ (I-CTs)(i-_I

where
L

CLs = qsS----_

in which qs _s the nominal slipstream dynamic pressure, defined

by qs = q + _ "

The factor K_ is a correction factor to account for the fact
that the lift-sharing between the immersed and unimmersed por-

tions of the wing is not simply proportional to the respective
areas.

From considerations of the mass flows associated with the

wing-rotor combination the factor K_ was obtained in the form

V, + CL_ i V,

V, + V,

where, from wing theory,

1

CLsi= l+ [_- 4CL CL_,-7- i
%

The drag and pitching momen_ for the wing with slipstream are
obtained similarly and are given by:

CDs A L D D

= M + C_ (I-CTs)(!-_-)

The rolling moment and yawing moment coefficients for the

wing are given by:

- LL W LRW
C_S = (K20+ K21 _L) (I-CTs) _F+ YAC_2b W

+ AC

_'S_owz_

s -- cL2cl-%s +  ll-CTsjF AC 2bW (C_Rw_
C* )
DLW _

OWER

4-14
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where the increment in rolling moment due to power is

c 1

and the increment in yawing moment is

= 1 _ _ c* -½ -_.
&C _ DSRw DRW R lnSpowER

• . Q

Figure 4.2 shows a correlation between the wing-in-slipstream
method described above and experimental results for the Boeing
Model 160 tilt rotor aircraft. As may be seen the simple

treatment gives acceptable predictions of wing forces and
moments.
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i. 2--- --PREDICTED

! I I ! T__/ I __L_-;--I
, -'(9--'- I J

i

0 -9---------__-.-

FLAP A_GLK 60°

•2 CDS _ACELLE A,4GLL 70 Q-
COLLECTIVE 14°
THRUST COEFFICIENT

..

RA_4G_ .32 _'O .38 •

0 _ I r

Figure 4.2 Correlation of Theory with Test for Predictions of Sh'pstream Forces and Moments
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5.0 ROTOR REPRESENTATION

The mathematical representation of the rotor for the 1985

transport is based upon full scale test data obtained on the
26 foot ;otor for the Boeing Model 222 tilt rotor. The test

data was curve-fitted and scaled by solidity to yield equations

suitable for representing the 1985 transport rotor. Where test
data was not available, the rotor performance was calculated

using Boeing rotor performance computer programs. The use of

mathematical expressions for the rotor forces and moments re- i
sults in maximum computational efficiency and minimum cycle

times. This method is preferrable to table look-up procedures.

5.1 Sign Convention

The sign convention for rotor forces and moments is defined in

FigureS. l, which shows the rotors under combined pitch

(_ T = i_T + oF) and sideslip S. The resultant rotor angle
of-&_£ack Ys given by

_R = cos-i (cos aT.L. cos S)

and the rotor disc "sideslip" angle is

_H = Tan-I [Tan B i
Sin aT. L.

The resulting rotor forces and moments are defined with respect
to the plane containing the resultant rotor angle of attack
e.g. normal force lies in this plane while rotor _ide force is

perpendicular to it.

5.2 Isolated Rotor Aerodynamic s

The equations used to represent the isolated rotor aerodynamics
are presented below. The equations are used to compute the

rotor wind-axes forces which are then resolved through the

rotor sideslip angle into nacelle axes and hence transferred
to aircraft body axes for use in the equations of motion.

5.2.1 Thrust Vs e75

The thrust produced by the rotor at any flight condition is

obtained from the following equations

= e75 - tan-l[_ cos _ - 6.3015u + 5.5816u 2[ O.75

- 8 u sin _ + 1.115 (!)

5-1
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and CT is given by

CT = 0.000679 ¢ + 0.000015 _2
(2)

+ 0.0022 U_ + 0.000211U2_

5.2.2 Thrust Vs Power

Once thrust has been established the power coefficient is given
by

Cp = 0.00006 + 0.00057 u + 0.000085 u2 + 1.12 CT3/2

- 0.024075 CT + uC T (0.53 + 0.456 u -39.937 uCT

+ 31.79 CT) + [0.0115u - 0.03u 2 - CT(3.4u -8_2)] (_RAD)

- 0.220642 (CT + 0.001971) sin e (3)

+ (0.3082u - 2.18u 2) CT sin

5.2.3 Normal Force

Normal force is obtained as the sum of three terms

CN F = F(u,_,CT ) + _CN____FA1 + _CNF B1 (4)

_A 1 _B 1

where the cyclic pitch derivatives are functions of _, u, and

CT •

In performing the analysis the cyclic derivatives were first
de fined as :

3CNF

_A 1 - 0.0000217_ + 0.0014483u 2 - 0.0000734_ (5)
- 0.0006u sin 2a + 0.00425 CT

and

CNF
-- = 0.0000425 - 0.0010492u - 0.0017028u 2

aB1 (6)

+ 0.0017892u sin a - 0.0245 CT

The following expressions may be used to calculate normal force

with zero cyclic pitch.
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For 0 < _ < 0.6

CNF = CNF 1 = 0.068U _ sin 26 + [0.133695_C T
(7)

+ 56.111u CT2 (i-'_)]K

where K = sin e for _ > 20 °

and K = sin _(I0-0.45e °) for 0 < _ < 20

i

For 0.6 < u

CNF = (CNF l) (1-0.8(u-0.6)) (8) [_

5.2.4 Side Force

Side force is defined in a similar manner to normal force

CSF = F(_, CT, _) + _CSF A1 + 3CSF B1 (9_ :
_A 1 _B 1 _

where the cyclic derivatives are given by:

_CsF
=-0.0000328 + 0.0008119u + 0.0013178_ 2

3AI (i0)

+ 0.0189 CT - 0.001342 _ sin a .

and

_CsF
- 0.0000].683 + 0.0011208u 2 - 0.0000568u (Ii)

3B 1

+ 0.00328 CT - 0.00052438 u sin 2_

The side force _t zero cyclic is given by the following equa-
tions :

CSF = 0.00430 _ sin _ - 0.0028827 _ (_RAD)I ,
(12)

+ 0.012 u sin _ CT (90-_ °) + 2.19u 3 sin _ CT

where _o = tan-i [u-uj cos 6 ]ui sin i (13)

5-4
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• 5.2.5 Hub Pitching _Moment

Pitching moment is computed in the same manner as normal force
and side force.

CpM = F(e, u, RPM, CT) + 9CpM A I + 3Cp_____M B 1 (15)
_A 1 _B 1

where the cyclic pitch derivatives are functions of _, _, RPM

and CT . , -

_CpM l
= 0.0001620 + 0.00086652u

_A 1

- 0.00056151u 2 - 0.00000591u (RPM-298) (16)

+ 0.0002826u sin 2_ + 0.0015 CT

and

_CpM
- 0.0000860936 + 0.00005641,

DB 1

+0.0003385u 2 -0,0019 CT (17)

-0.00000551u (RPM-298)

+0. 00048791u sin

CpM = 0.009950 u sin _ -0.010960u 2 sin

+ 0.0028126 _ sin 2_ - 0.0057743 _ sin a 2-_

+ (1.802 '_ sin a - 7.56 (u sin a)-_)CT

5.2.6 Hub Yawincj Moment

The yawing moment d ivatives due to cyclic pitch are similar
to the pitching moment derivative_ and ar_ given by

3Cy M
= -0.000086093 + 0.0000612 u

3A 1

0.0003385 _2 -0.0019 CT (19)

-0.00000551 u (RPM-298)

+0.0003 _, sin

5-3
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and

CyM

_B 1 --0.0001620 -0.00086652

+0.00056151 u2 + 0.00000591 _ (RPM-298) (20)

-0.001 CT - 0.0003638 u sin 2_

The yaw moment at zero cyclic pitch is given by the following

equations
!

For 0 < _ < 0.37

CyM = (0.018369 u -0.0007) _ sin e --1.2 u2 CT sin

+ 0.00631 -0.002604_ -0.004877 RPM -i _ s29--

(21)
and for u -_ 0.37

^

CyM = (0.01916 - 0.15321 (u -0.5435) ) sin

_22)

- 1.2 42 CT sin

5.2.7 Pitchin @ Moment due to Pit h R_te

dCpM

I000 dQ - 1.5 + u 0 _ '_ ! .2

= 0.25 + 7.26 u .2 < u < .39
u

= 4.1681-2.79 u '_ > .39

5.2.8 Yawing Moment due to Yaw Rate

dCy M dCpM

dR - -

5.3 Rotor/Rotor interference

A procedure for calculating rotor-on-rotor interference effects
is included in the mathematical model. Rotor-on-rotor inter-

ference arises during sideward flight at low airspeeds with

the rotr,rs up and, to a lesser extent, during slipped flight in
the transit._.on configurations. The basis for the method is as
fo 1lows.
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The above sketch depicts the tilt rotor aircraft flying side-

wards at low speeu. The wake of the upwind rotor interferes

with the inflow to the downwind rotor producing a change in
this rotor's forces ard moments.

Reference 6 presents calculated values of the normal component

of the induced velocity near a rotor having a triangular disc

loading, for different wake skew angles, ;<. This data is used

to compute an interference angle at the downwind rotor. The

interference angle is subtracted from the isolated rotor angle

of attack and the resulting angle of attack is used in the cal-
culation of the forces and moments. The rotor/rotor interference

effect is washed out with nacelle angle and sideslip angle so

that there is no interference at the high end of transition and

in cruise. The equations used to calculate interference are

presented in Appendix E under the rotor/rotor interference section.

5.4 Effect of. Wing Upwash on Rotor Performance

The rotor operates in the upwash field associated with the lift-

ing wing. 'fhus the rotok-behaves as if it were operating at

an increased angle of attack. The effective upwash angles were

calculated using lifting line theory. In the mathematical

model the upwash angles are input in the form of a table of up-

wash angles as a function of wing lift coefficient, and nacelle

incidence angle.

5-7
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°.i Control Arrangement

Control of the 1985 tilt rotor aircraft is accomplished by uti-
lization of longitudinal cyclic, differential longitudinal

cyclic, collective and differential collective pitch, in con-
junction with the airplane control surfaces. The airplane
control surfaces consist of conventional elevator and rudder

and a flaperon and spoiler arrangement. The primary controls
in each axis for each regime of flight are shown in Table 6.1.

The rotor controls provide a major portion of the control capa- '
bility from hover through the low transition speed range, but
airplane surface controls are operative in all regimes of i!
flight, including hover. The rotor controls are phased out

during transition as nacelle incidence decreases, speed in-
creases, and the airplane controls become more effective.

6.2 Longitudinal Control

Longitudinal control in hover is provided by longitudinal cyclic

pitch. This is phased out through transition as the elevator

becomes more effective. The elevator provides longitudinal
control in the cruise mode.

6.3 Lateral/Directional Control

Roll control in hover is accomplished by differential collec-

tive (thrust) and y_w control by differential longitudinal

cyclic (thrust vector tilt). Differential engine power is pro-
vided (via the governor) to ensure maintenance of roll control
in the event of cross-shaft failure and also to minimize cross-

shaft torque.

In transition, differential collective and differential cyclic
per inch of control movement are scheduled as functions of

nacelle incidence. Longitudinal and lateral cyclic, elevator

angle and flap deflection are also scheduled with nacelle angle
to provide a "gntrols-fixed trimmed condition through transi-
tion.

In cruise, lateral control is pro,tided by flaperon/spoilers

and rudder. The flaps are full-span, single-slotted of 30 per- L
cent chord w±th a fixed hinge point 14.6 percent below the wing

chord line. The flaps act as flaperons for roll control and
deflect downward to a maximum of 20 degrees from the nominal

fl_p setting. Maximum incremental lift from the flaps is at-
tained at approximately 35 degrees deflection and the maximum

rolling moment occurs at the same time, so the flaperon !e-

flection for roll control is limited to a maxim lm total flap
deflection 9f 35 degrees, if, for example, the flaps are

symmetrically deflected 30 degrees, only 5 degrees additional
deflection is utilized for roll control. Full-span spoi1__rs

6-1
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TABLE 6 •1 FLIGHT CONTROLS

FLIGHT MODE PRIMARY CONTROLS

Helicopter (Hover) I'

Pitch Longitudinal Cyclic

Roll Differential Collectlve

Yaw Differential Longitudinal
Cyclic

Height Control Collective/Engine Power

Transition

Pitch Longitudinal Cyclic and
Elevator

Roll Differential Collective,

Differential Longicudinal

Cyclic, Aileron and Spoiler

Yaw Differential Longitudinal
Cyclic, and Rudder

Ai rp iane

Pitch E levato r

Roll Aileron and Spoiler

Yaw Rudder

6-2
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of 12.7 percent chord are located )rward of the flaps and

hinged to the rear spar. The spoilers are "slot-lipped", i.e.,

they open up the slot fo._ward of the flap with the flaps ex-
tended resulting in a large increase in roll control as com-
pared to the control power with flaps closed. Maximum deflec-

tion of the spoilers for roll control is 45 degrees from the
closed position.

Maximum spoiler rolling moment coefficient is also attained

with flaps deflected approximately 35 degrees. Spoiler effec-

tiveness with the flaps retracted is approximately one-third
that attainable with the flaps extended.

The spoilers and flaps are also used in conjunction with down-
load alleviatian devices, referred to as umbrellas, mounted on

the leading edge of the wing for download relief in the hover

and low speed range. The umbrellas are 18.6 percent chord on
the upper and lower wing surfaces. Maximum deflections of the

surfaces for download alleviation are: flaps 70 degrees,

spoilers ii0 degrees from closed, and umbrellas aft-edge-of-the-
upper surface up to 20 degrees from vertical and aft-edge-of-
lower-surface down to i0 degrees from vertical. The umbrellas

and spoilers retract at 50 knots automatically.

6.4 Thrust/Collective Control

In hover, forward motion of the thrust/collective lever mechan-

ically commands both .increased collective pitch and increased

power. The governor provides a fine adjustment to the collec -

rive pitch to maintain rpm. Over-travel of the pilot's lev.:r,
beyond the normal max power position, provides a collective

pitch landing flare capability. The over-travel is entered by
going through a "gate", which shuts down the rotor governor and

leaves the pilot's lever directly connected to collective pitch,
as in a helicopter collective pitch lever.

The collective pitch is also scheduled through tranJition as a

function of nacelle incidence, minimizing the adjustment need-
ed from the governor.

In cruise the mechanical interconnection of the thrust/collec-

tive lever with collective pitch is phased out comp1_etely so
that a pure power demand system with governed pitch, like a

conventional fixed wing airplane, is provided. The control
system block diagrams are shown in Appendix E.

6.5 Control Feel

Control force gradlent variation with dynamic pressure prevents

excessive sensitivity of control at high speed. The force

gradients of the primary controls (longitudinal and lateral
stick, and pedals) are varied linearly with dynamic pressure.

6-3
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The rudder and elevator deflections vary linearly with pilot's

rudder pedal and longitudinal stick travel. Aileron deflection
is programmed linearly and spoiler deflection non-linearly with

lateral stick deflection, to provide near-linear rolling moment
effectiveness to near cruise speed. As mentioned earlier,

spoiler deflection is limited at high speed by limiting the

actuator capacity. The control breakout forces and force
gradients are shown in Appendix E.

6.6 Stability Augmentation Systems -

Stability augmentation systems are provided to enhance aircraft /
flying qualities. The system consists of longitudinal, lateral

and directional SAS. The longitudinal stability augmentation
system incorporates a pitch rate feedback and a longitudinal

stick pickoff. In addition, a pitch attitude signal is in-

corporated to provide some degree of attitude stabilization
without the autopilot. (An autopiiot is not represented in
this simulation.) These signals are shaped and put through

an authority limit. The longitudinal SAS commands longitudinal

cyclic pitch to provide the required damping in hover and
transition. It is not required in the cruise mode and is

phased out at 175 knots. The block diagram of the longitudinal
SAS in given in Appendix E.

The lateral stability augmentation system is operative in all

flight modes. It consists of roll rate feedback for increased

damping in roll, a roll attitude feedback, to provide roll atti-
tude st&bility, and a lateral stick pickoff. In addition, a

sides!ip feedback is incorporated to compensate for dihedral
effect. A lateral SAS authority l±mit is incorporated in the

circuit. The output of the lateral stability augmentation sys-

tem is input to the control system in terms of equivalent
lateral stick, since the drive actuator is in series with, and

conunands the same control as, the pilots lateral stick control
' lp I

l_n.age. The lateral _AS never opposes the pilots command.
The block diagram of this system is shown in Appendix E.

A directional stability augmentation system is pz-¢ided and

. operates in all flight regimes. The yaw channel consists of
yaw rate feedback for increased directional damping in hover

and low speed flight modes, yaw attitude feedback to p;ovide

yaw attitude stability, and a rudder pedal pickoff for quicken-
ing. Directional damping provided by the rotozs is quite high

in the higher transition and cruise speed ranges. No addition-
al yaw rate damping is therefore needed in cruise. A feedback

is provided to modify the effective yawing moment due to roll
rate which exists in the basic unaugmented aircraft configura-

tion in the cruise speed range. A directional SA[: authority !

limit is incorporated. The SAS command is input to the control I
_ystem in terms of equivalent inches of rudder pedal. The
block diagram for the directional stability augmentation system 1
is shown _n Appendix E. I"
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6.7 Thrust Management System

The thrust and power management system for a tilt rotor air-
craft must be compatible with both the helicopter and airplane

configurations. Thrust control for the hover task, rpm control,

gust response (especially in the cruise flight regime), and
effect on aircraft flying qualities must all be considered.

Classically, helicopters have used collective pitch demand to
control thrust and fuel governing to control rpm while fixed-

wing aircraft have used fuel flow demand to control thrust and
collective pitch governing e.o control rpm. Each system has its

advantages. For a tilt rotor aircraft it is desirable from a

practical viewpoint to have one type of governing for both the
helicopter and fixed-wing flight regimes. Collective pitch

governing was chosen for the 1985 tilt rotor for several rea-
sons :

o It is more readily adapted to the hover flight
regime than the fuel governor is to cruise

o It has better gust response characteristics

o It is fast acting and has high accuracy

o Thrust response to pilot control can be easily
shaped with feed fo_vard loops

o It has been demonstrated successfully in hover,
transition and cruise in the CL-84 aircraft

With collective pitch governing there are two areas in the

thrust management system to be considered: (i) design of the
collective pitch governor; and (2) the feed forward loops for

shaping pilot thrust control. The block diagram for this sys-
tem is shown in Appendix E.

The governor was designed to meet the following objectives:
(i) 0.3 percent steady state error in 2.5 to 3 seconds; (2)

2 percent rpm overshoot; and (3) satisfactory effect on air-
craft flying qualities in the all-operational mode (i.e., all

aircraft components operational and performing as designed).

A single governor reference that uses the rpm signal from each
rotor and averages them satisfies the design criteria. To

achieve the required accuracy end transient response goals,
integral as well as propc.tional feedback of rpm is necessary

in both the hover and cruise regimes. Governor gain is schedul-

ed with nacelle incidence to maintain a near optimum level of

governing throughout the flight envelope. Gains are varied
linearly as the rotor rpm is changed from hover to cruise. The

second reguirement of the governor system is shaping the rotor
thrust output for a pilot throttle input. Considerations in
determining the proper shaping include:

6-5
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(I) throttle sensitivity

(2) time constant to reach 63% of steady-state thrust

(3) allowable thrust overshoot

Variable pilot's control sensitivity is employed to give the

optimum sensitivity in the hover power range yet maintain full
power control within a reasonable throttle throw (8 inches).

Shaping of the pilot command with coll_ctive quickening is , .

used to improve the thrust time constant and thrust response !

transient shaping so that the pilot may perform the precision _
hover task with a minimum of difficulty. In the cruise regime,
shaping of the thrust output is unnecessary and is phased out
during transition.

The thrust/collective pitch control system is designed in such
a manner that, during hover, when the pilot moves his control,

he commands both a change in engine fuel setting and, mechanic-

ally, a change in collective setting. The governor then oper-
ates with a time lag to trim the collective to Lhe value re-

quired to maintain rpm. The mechanical collective change
feature is washed out as a function of nacelle incidence so

that when nacelle incidence is decreased Lo zero, the pilot

commands only engine fuel.

6-6
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7.0 ENGINE MODEL

This section describes the representation of engine performance

and dynamics. The basic engine cycle performance data consists

of tabulated values of four variables: power, fuel flow, gas
generator shaft rpm, and power turbine shaft rpm. These para-

meters are a function of Mach number and turbine inlet tempera-
ture. All data are in referred, normalized format as shown in

Table 7.1. Because of the normalized, referred format, all

data are valid for any ambient conditions. The effects on

engine performance of operating at non-optimum power turbine
speed are included in the model. The referred format also

facilitates the inclusion cf engine thermodynamic and mechanical !

limits. Limitations on engine cycle operation may be input in j

any combination of the following: fuel flow, torque, gas gen-
erator speed, gas generator referred rpm or output shaft speed.

The flow charts which describe this routine mathematically are

shown in Appendix E, and the performance data in Appendix F.

A simplified dynamic model of the Lycoming LTC4V-I engine was
formulated for use in the tilt rotor mathematical model. The

model basically consists of two first-order lags in series with

variable time constants and gains. The output of the model is

rate-limited to reflect actual engine performance. This simpli-
fied model gives satisfactory results for both large and small

power transients. The block diagram for this system is shown

as part of the thrust management system block diagram shown in
Appendix E.

TABLE 7.1 ENGINE CYCLE DATA FORMAT

REFERRED,
VARIABLE SYMBOL NORMALIZED FOP_M

Thrust FN FN/_F _

Power SHP SHP/_/_SHP *

i_ ,
Gas Generator rpm N I NI/_ .NI

Power Turbine rpm NII _qii/v_N_i

Ft.,
Fuel Flow Wf Wf/_vUF_T

Wf/% _SHP*

Turbine Inlet T T/._

Tempe ra ture

i
Where: * = Max. Power Setting, Static, Sea Level,

Standard Day

I 0 = Ambient (°R) Divided
Temperature by 518.69°R

= Ambient Pressure (psia) Divided by 14.696 psial

I 7-1
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8.0 GROUND EFFECTS

The effects of operating near the ground on the rotors and air-

frame are included in this model. The presence of the ground
on the airframe imposes a boundary condition which inhibits the

downward flow of air normally associated with the lifting action
of the wing and tail. The reduced downwash has three main
effects ;

J

o A reduction in the downwash angle at the tail

o An increase in the wing lift-curve slope ;

o An increase in the tail lift-curve slope
2

These have been accounted for by the methods given in Reference
2, Appendix B-7. The data given in the reference for the

change in wing and tail lift-curve slope has been used directly. .
The equation specified for the change in downwash angle at the

tail due to ground proximity was modified for convenience. The

equation as stated is:

2 2

b_. + 4(h+H) z

= the change in tail downwash angle due to ground

where (_C)g proximity

= the downwash remote from ground
,i

h = the height of the tail root quarter-chord
point above the ground

H = the height of the wing root quarter-chord

point above the ground

b I = a function of wing lift and wing flap geometry

Fo_" this mathematical model, the b I in the above equation was
taken to be equal to the wing span, bw. This results in a
small error in the change in horizontal tail downwash. It is,

however, sufficiently accurate for this simulation.

Ground effects on the rotor are difficult to predict analytic-

ally, especially in forward flight. Wind tunnel test data for
the Boeing Model 160 powered model, Reference 5; was plotted as

a thrust ratio versus effective rotor height/diameter ratio,

for two rotor advance ratios. This data, shown in Figure 8.1,
was curve fitted and linearly interpolated for advance ratio.

The resulting equation is as follows: - (for the right rotor.

8-1
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The left rotor is identical except for subscripts)

= 
dRR EFF _D|EFF

RR RR

+ 1.2479 - .8806 _ RR]

where h = hRR

FF 2R[Isin(9 + iNR) COS *1 + .0174]
RR

hRR = - ZDOWN + (L S cos iNR- XCG) sin e

+ [(LS sin iNR + ZCG) cos _ - YN sin ¢] cos

= Rotor hub height above the ground

LS = Distance from the nacelle pivot to the rotor hub

XCG = Longitudinal distance from the pivot to the CG

ZCG = Vertical distance from the pivot to the CG

8 = Aircraft pitch attitude

¢ = Aircraft roll attitude

iNR = Right rotor nacelle angle

YN = Wing semispan

The equation for the effective rotor height to diameter ratio

(h/D)EF F was derived by dividing the rotor hub height by

[sin(0+i N) cos _]. This yields the rotor height alcng the
shaft. For the cruise condition the hub height is infinite,

(h/D)EF F is infinite and the augmentation ratio due to ground

effect is unity. Some special conditions which must be observ-
ed when using these equations are noted in Figure 8.1.
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Figure 8.1 Effect of Rotor Height on Thrust Augmentation Ratio
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9.0 AIRFRAME REPRESENTATION

An airframe representation/preprocessor c_iculation is included

in the mathematical model that enables the user to input the
location of major structural elements of the aircraft in terms

of water line, butt line and station line location. All lengths,

center of gravity distances and inertias used in the equations
are then calculated. This feature enables the user to quickly

change the location of major structural elements to assess their
impact on vehicle response.

ir
In the derivation of the basic equations of .,otion, the aircraft

was divided into three principal mass elements. The fuselage

mass element (mf), the wing mass element (mW) , and the tilting
nacelle mass element (mN). The components of the three mass
elements are shown below.

Fuselage and contentsHorizontal tail and contents

• fuselage mass < Vertical tail and contents

element (mf)) Crew and trapped liquidsCargo

C Wing and contents

• win,, mass element Fuel carried in wing

(mW) I Fixed nacelles a_d/or engines

• tilting nacelle mass ) Tilting nacelle (including

elemenu (mN) _ rotors)

These three mass elements a'mng with their respective distances

from the nacelle pivot to the center cf each mass element are

used to ccmpute the aircraft center of gravity distances with
respect to the nacelle pivot. The equations for these center
of gravity distances, including the effects of nacelle tilt are:

XCG = m

ZCG = mfhf +mwhwm " _(_)[sin (iNL-X_ + sin (iNR-'_)]

The masses and distances used in these equations are defined
in the sketch below.

9-1
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_O_o^

+X ' / '

ZCG PIVOT

I kw

hlf

m ---_( XCG -7
!

(AIRCRAFT C.G.)

mf
Note: Pou±tive dis tance:_ +Z'

are indicated by the
dlrection of the
arrows

The quantities required to compute mr, if, mw, (w, m, :, raN, _,
hf, hw are available from an aircraft three-view cJrawlng and a

standard mass properties buildup. The quantities % and ' (de-
fined in the sketch) are easily obtainable fron_ a draw %g. The

mass quantities (m, mN, mf, mw) are computed from a me _, prop,_r-
ties buli_ip by adding up the components of each mass element

as described in the previous paragraph. The lengths °f, %w,

hf and hw are computed by suntning th_ weight moments of the
components of each mass element about the nacelle pivot. The

equations for these operations have been derived and are pre-

sented in Appendix E under the preprucessor equations. The
input data to these equaticns include the weight of each com-

ponent, and its location in terms of water line, fuselage
station line, and butt line.

When the center of gravity distance of each mass elem__nt has '

been determined, the component and total aircraft mass moments

ef inertia can be computed. The equations for the total air-
craft mass moments of inertia are presented in Aopendix C.

The moments of inertia of each mass element are computed b_" >
application of the parallel axis theorem. The mements of in- !.
ertia of each component about its own center ot gravity must be

9-2
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known. The parallel axis t/_eorem states: ]'

. N !
Ixx = i=ir [Ixxoi + mi (y_ + zl)] _!

i
N

= Z [Iyyoi + mi (z_ + x2)] I.Iyy i=l

b

N

Izz = Z [Izzoi + mi (x2 + y2)l
• i=l

N

Ixz = Z [Ixzoi + mi(xizi) ]
i=l

where N represents the number of component masses.

These equations have been expanded to compute the moments of

inertia of each mass element and are shown in Appendix E under

the preprocessor section.

Other lengths required for the mathematical model are computed
in this section. The input data for these computations are in

terms of the water line, butt line, and fuselage station line
locations of the elements in question.

9-3
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I0.0 AEROELASTIC REPRESENTATION

Two aeroelastic degrees of freedom are included in the tilt

rotor mathematical model. These are first mode wing vertical

. bending and first mode wing torsion. The stability and control
characteristics of flexible airplanes may be significantly in-

fluenced by distortions of the structure under transient load-

ing conditions. When the separation in frequency between the
"" elastic degrees of freedom and the rigid body motions is not

large, then significant aerodynamic and inertial coupling can
• occur between the two. Many of the important effects of elastic

. distortion, however, can be accounted for simply by modifying

the aerodynamic equations. The assumption is made that the
changes in aerodynamic loading take place so slowly that the

structure is at all times in static equilibrium. This is
equivalent to assuming that the natural frequencies of vibra-

tion of the structure are much higher than the frequencies of

the rigid body motions. Thus a change in load produces a pro-
* portional change in the shape of the airplane, which in turn

influences the load. This is known as the method of "quasi-
static" deflections where all the coupling occurs in the aero-

dynamic equations.

Since for the 1985 transport, the rigid-body short-period modes

are separated from the elastic modes by a substantial margin,
_ the method of "quasistatic" deflection is used to represent the

wing bending and torsion modes, with the only coupling in the
aerodynamic terms (through angle, of attack). The wing twists

and bends instantaneously when subjected to an applied load.
The assumptions made in deriving the wing bending and torsion

relationships are as fcllows:

• No coupling between bending and torsion modes

• Wings are cantilevered from the fuselage

• Elliptical loading assumed for the rigid untwisted

wing

• Aerodynamic loads act at the wing quarter chord

• Wing elastic axis coincident with cross shaft

• Wing center of mass assumed to lie on the elastic
axis

• First wing torsional mode assumed linear from tip
to root

In the mathematical model, wing twist at the tip is calculatedlm

using the following equation:

10-1
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c2 bw
Ket _t = MACT - IEnER + q w Cmo2

f

dC£ Cw I 6_, I _RIGID

I

where: Ket = Wing torsional spring constant

8t = Wing twist angle in degrees

MAC T - Nacelle actuator pitching moment

IE = Engine inertia

fiE = Engine speed

R = Body yaw rate

q = Dynamic pressure

cw = Wing reference chord

bw = Wing reference span

Cmo = Wing zero lift pitching moment coefficient

dCmc/4 = Wing section pitching moment slope with

dC Z section lift coefficient

CL_ = Wing lift curve slope

_RIGID = Wing angle of attack without twist i

Assuming a linear mode shape from the wing tip to the root and

a cantilevered wing (zero twist at root), the wing twist at the
aerodynamic center location of the wing is obtained by linear

interpolation. The wing twist represents the change in angle

of attack of the wing tip and aerodynamic center and are used
in the aerodynamic equations.

Wing vertical bending deflection is also treated on a quasi-
static basis. The form of the equation used in the mathemati-

cal model for the wing tip deflection is as follows:

10-2
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N I i

" where: h I = Wing tip deflection
r

Zw = Wing lift

: Z_R O = Total wing lift

. LNRo = Nacelle rolling moment
I

aT = Vertical acceleration of the nacelle

aWA C = Vertical acceleration of the wing aero-
dynamli c center

KwI_KW5 = Constants for 1985 transport wing

The form of the equation for the wing deflection at the aero-
dynamic center is written similarly:

hlwA C = KW6 ZNAERO + KW 7 Z%R 0 - KW8 LN_ERO - KW9 aT - KWI 0 a--WAC

The symbols represent the same quantities as the tip deflections

except the quantities KW6 to KWl 0 are different from K 1 to K5.

These equations are derived in Appendix A. Since the wings

are assumed cantilevered, these equations may be written for
the left and right sides. The equations as used in the mathe-

matical model are written in Appendix E.

The wing tip and aerodynamic center vertical bending velocities
are computed by dividing the change in vertical bending deflec-

tion by the simulation time frame. The vertical bending deflec-
tions and velocities are then added to the velocity components _

at the wing tip and aerodynamic center. These velocity com-

ponents are then used in the calculation of the aerodynamic
angle of attack.

In addition to the aerodynamic coupling via angle of attack, as
discussed above, the wing tip vertical forces and moments act

as the driving functions to a set of second o_der equations
that are forced at the wing vertical bending frequency. This •

results in giving a pilot a "seat of the pants" feel for the
vibratory aspects of the wing vertical bending mode. '

10-3
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! 11.0 CONCLUSIONS

A full-force, ii degree-of-freedom mathematical model of a

• : 1985-era Tilt Rotor i00 passenger aircraft has been formulated.

" The mathematical model is complete and ircludes full-force

nonlinear aerodynamics of all components, turbine engine per-

formance and response, thrust management system and governor,

pilot's controls and automatic stabilization systems. The

model is suitable for implementation on the Ames Flight
Simulator for Advanced Aircraft.

r
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_PPENDIX A - TREATMENT OF WING FLEXIBILITY
a.

As described in Section 10 the large separation which exists

between the natural frequencies of vibration of the wing struc-
•- ture and the aircraft rigid body motions, enables the elastic

deformations of the wing structure to be calculated on a quasi-
static basis•

In the simple treatment presented below, the bending and tor-
sion modes are considered to be uncoupled• The wing is treated
as a cantilever with a built-in root end. The wing is free to
twist about the elastic axis which is assumed to coincide with

the nacelle pivot line. The center of mass of each chordwise
strip is also taken to lie on the pivot line. The unloaded

wing has neither geometric nor aerodynamic twist.

WZNG TWIST

Spanwise twisting of the wing takes place under the action of
the nacelle aerodynamic and inertial moments, the wing lift
distribution, and the spanwise distribution of aerodynamic

pitching moment. The nacelle aerodynamic moments consist of
rotor hub loads, transferred to the pivot, together with the

aerodynamic loads on the nacelle itself. Nacelle inertial

moments include the gyroscopic effects of the rotor drive
system.

With reference to Figure A.I, MN is the moment supplied or

absorbed by the nacelle tilt actuator. If K8 is the wing
stiffness as seen by the wing tip, then

MN = K8 8T (A-l)

The total moment about the elastic axis due to wing aerody-
namics, nacelle loads and engine gyroscopic torque is

T = m dy + MN + Mgyro (A-2)
O J

The aerodynamic moment about the elastic axis at any station

y is given by

M = Mc/4 + £x (A-3)

where £ is the section lift and x is the distance from the

quarter chord to the elastic axis. In terms of the section
aerodynamic coefficicnts,

= _pvl..2 2 _ + {pV2c2C£x_ (A-4)m (y) c Cmc/4
C

A-I
!
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The section lift coefficient, C£, is given by ..

dC£

= k aO (_R- Ep- aO + @t(y) ) /i- (_b_ (A-5) , "

where aR is the wing root section angle of attack -- ,_.
1

ep is the rotor induced downwash, assumed constant
spanwise

c_o is the section zero-lift angle

9t is the structural twist at station y "

2 2The factor k - is introduced so that, for the untwisted

wing, the lif_ distribution is elliptical. The value of k is
obtained from the rigid wing elliptical loading as "-

k - 4 (A-6)
- _ CLa _

a o

Thus the equation for C£ becomes, with aRIGI D = aR-_ p- uo ,

CLa

In equation (A-4) we can write, for low angles of attack, \

Cmc/4 = Cmo + dCmc_/4 C£ (A-8) -" _
dC £ i "_'_-

and therefore ..

m(y) = _ pV2ca Cm O + dCmc/4_Cg+ C£ (A-9)

The equation for the total wing twisting moment, equation I •
(A-2), can now be written as, 1

T = Mactuator + MGYRO + { pVaCaCmo b +l 0Vac a .. _i.ii,

• + C_dy (A-10)

dC £ o _!;

I

i

A-2
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Figure A. 1. Wing Geometry for Derivation of Flexibility
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Using equation (A-7), assuming a linear structural twist from ..
root to tip and performing the indicated integrations, the ; _

equation for total wing twisting moment becomes

T = K88 T = Mactuator + Mgyro + _ 0V2bC2Cm + 0V 2c /4 + ; _
O _ _ dC£ _

: X CLeb(3_eRIGID + 48T) (A-II) ....
rt

The equation for the actuator moment is given in the equations ..
of motion, Section 5.0.

and writing q = qs (I-CT s) = _ pV2
Rearranging,

(dCm X)+bwCmc _A-12)
1 c 2 _erigid __ + _

8T = MN+Mgyro+2-qs(l-CTs ) w dC L c

- _ qsbwCw CL_

where CM o , the zero-lift wing section pitching moment coeffi-

cient, is a function of flap deflection:

Cmo = C1 + C26f + C3_f 2 (A-13)

Knowing the tip value of twist, the twist at any other span-
wise station is obtained by assuming a linear variation of
twist from zero at the root to the tip value. _i"

WING VERTICAL BE£_DING

The spanwise bending moment at any spanwise station y, on the

wing is the sum of the bending moments due to wing aerodynamic
lift, wing weight, n_celle lift, nacelle weight and net torque
on the nacelle. The expressions for each contrLbuticn to the

bending moments are derived below.
i

o Bendin_ moment due to win_ loading.

Assuming an elliptical distribution of lift the bending

moment is given by

b_2Ma (yl) = £(y) (y-yl)dY (A-14) ""

Yl ......

'' . ,

A-4

#

\ g

I

1977016150-107



, D238-I0002-I

. where £o is the lift per unit length at the wing root. Intro-

ducing the spanwise variable 8=cos -I (2Y1making the required ""
substitutions and integrating, the be_ing moment at any point

,. y is:

M (y)= £ob2 [i (sin 8-8 cos 8)-1 sin38] (A-15) ,_

o Bending due to nacelle net vertical load. '_

; The net vertical force on nacelle is

F=F a _ nW N

where F a is the aerodynamic force and nW N is the inertial _
load on the nacelle. The bending moment due to nacelle !

, , force is i

Fb
e

" "" MN(y) = (1-cos 8) (A-16)
1%

2 _

i o Bending due to wing weight.

_ Assuming a uniform distribution of wing weight
b/2 :

!. Mw(yl) =-n S w(y)ly-yl)dy i
Yl

,: and w(y) = 2W/b where W is the weight of one wing panel

... MW(yl) = 2nW _2 (y-yl) dy (A-17) ,

Yl

,, nWb 1
. i.e. MW(y) = - _ (1-cos 8 - _ sinZS)

o Bendin_ due to nacelle torq1_ (rollin_ moment)

T(y) = constant = T (A-18)

Total bending moment at station y is therefore

M(y) = Ma(y) + MN(y) + MW(y) + T (A-19)
j

Assuming a linear variation of El from root to tip given _
by

El(y)-EI O |l-a (2h-_lI= El O (1-a cos 8), (A-20)
t
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the curvature of the wing due to bending is ""

M(y) =dZz__ = £ob 2 [(sin 8-8 cos 8)-i/3 sin38)]+Fab [l-cos 8 81 /EI (y) dy 2 8EIo 1 - a cos 8 2-E_oL_ cos

_ nWNb i l-cos @ i _ nWwb I l-cos @ - 1 sin28 ]2EI---_ l-a cos 8 2EI---_ l-a _o_ 8
l

EI--_ "(i-a cos 8) (A-21)

Double integration of this equation yields the following ex-

pression for the bending deflection of the wing at any point
y on the span:-

Z (y) Lb3 b3Fa nWNb3= r_l + _ _2 - _ _3
8_rEI o 8EI o 8EI e

nWwb 3 + Tb 3 .

- 8EI o _4 4EI o _5 (A-22)

l-a cos 8 dy dy
o o

4 J ..
o o

}o o l-a cos 8

_5 _o o l-a cos 0

and where the wing lift (2 wing panels) L = _ Rob. The function

_I through _5 we_:e obtained numerically and _re preset, ted in
Figure A.2.

W

Since L = -2 ZAERO
N

Fa. _ ZAERO

T = - LAERO

A-6
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1 ZAERO 1

nWw = _ mw m = _ mw _AC

nWN = mN aT

where m is the mass of two wing panels: w

m is the total aircraft mass
m

• aWA C is the acceleration of the wing aerodynamic ,
center

aT is the acceleration of the wing tip

. and since the values of _I through _ are constant for any
glven station y on the wing we can wgite the final equation
for wing bending in the form

hl N + W N -= ZAERO ZAERO LAERO a T
KW 1 KW 2 - KW3 - KW4

- KW5 aWAC

where hI = -z

KW1 = b3_28EI
o

= b3¢ 1

4_rEI
o

b3_ 5
KW3 4El

o

: mNb'* 2
KW4 8EI

o

= mwb3¢ 4

KW 5 8EI o

This is the form given in the computer representation. The

bending deflection at the aerodynamic center and at the wing

tip are obtained using the values of _i appropriate to
these stations.

A-7
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APPENDIX B - DERIVATION OF LANDING GEAR EQUATIONS

Presented below are the equations for landing gear forces and
moments arising from ground contact. The derivation accounts

for brake and friction forces together with a simplified re-
presentation of the oleo dynamics. Nose whee_ steering is not
included.

With reference to Figure B-I the distance from the center of

gravity to the bottom of the right main wheel following a
positive pitch rotation is

h8 = X sin 8 - Z cos 8 - r (B-l)

•-. where X and Z are the coordinates of the hub of the wheel
relative to the C.G, and r is the tire radius. If the air-

i craft is now rolled right, through the angle _, the bottom of

__ the right gear moves through a distance.

h_ = [Y sin _ + (Z+r) (cos _-3.) ] cos 8 (B-2)

L. The huight of the bottom of the wheel above the ground is
therefore

q .

_. h = HCG + h8 - h_ (B-3)

and the oleo deflection during ground contact is given by

.. HCG +h 8 _h_
hT = cos _ cos 8 (B-4)

By differentiation of equation B-4 and making small angle

assumptions regarding the aircraft pitch and roll angles during
touchdown, the rate of change of oleo strut deflection is ob-
tained as

HCG �XQ- YP (B-5)
iT - cos _ cose

Assuming that the oleo response is that of a second order

system, the equation of motion for the landing gear is

Fs = KST hT + DST iT (B-6)

where KST and DST are the equivalent spring rates and damping

for the oleo, and FG is the force on the landing gear strut.

B-I
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! "-L Tire Friction and Side Force

The friction force acting on each tire during ground cortact
is resolved into a force F along the line of intersection of i

the plane of the wheel and_the ground plane, posi%ive forward, i
and a side force F at right angles to F lying in tLe ground i
plane and positive_to starboard. The fr_ction force F is

assumed to be proportiona'l to oleo force and the amount of i

braking exerted by the pilot. The side force is proportional _ ;
to the oleo force.

The components of tire friction are: i
" 4

= u (B-7)i F C"0+ FGZT !
I I <

Fs FG Z (B-8)= _s v _. I --

where _o, Ul and _s are the coefficients for rolling friction, _
_ brake friction and sliding friction. BG is expressed as a :

percentage of full brake pedal deflection. The signs of the

forward and sidewards velocity are introduced to properly
!- orient the tire forces.

The force and moment contributions of each l_nding gear to the _ :

aircraft total forces and moments are, assuming small angle_;

= e (B-q3 ,
_X n F_n - FGZ n

= + _ (B-10)AY n F s FGZ
n n

= % + FGZ (B-II)
&Zn F_ne - Fsn n

+ AXn(Z n + r + hT ) (B-12)AMn =-AZnXn n
n

ALn = AZn Yn- AYn(Zn + rn + hT) (B-13)

&N =-_X Y _ X _Y (B-14)
n nn n n

where n=l, 2 and 3 denote the left main gear, right main gear

and nose gear, respectively.

The total contribution of the landing gear forces to the forcesi

and moments at the center of gravity of the aircraft are:

B-3
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3

AXLG = _ AXn

n=l

3

AYLG = [ AYn
n=[

3

AZLG = [ AZn
n_l

• °

: 3

• ALLG = [ ALn
n=l

3

AMLG [ AMn
n=l

3

ANLG [ ANn
n= 1 _ .

P

B-4
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_. APPENDIX C - VELOCITY AND ACCELERATION TRANSFORMATIONS

: _ AND CENTER OF GRAVITY/INERTIA EQUATIONS

! _ i. C.l Velocity Transformations

The calculation of aerodynamic forces on wings, fuselage,

( nacelles, and tail surfaces requires that the angle of attack..... and relative wind velocity at these surfaces be known. These

velocities are obtained most conveniently in terms of the velo- _ :

: I city of the pivot reference point.

With reference to Figure C.1, the veloc_.ty of a general point
• in the aircraft relative to the airplane center of gravity is I

•
V - 6r + _ x r (C-l)

1 - 6t -- --

where r is the radius vector from the c.g. to the point and _
is the-angular velocity of the aircraft. Thus, expanding -

equation C-l, the velocity of the pivot relative to the c.g. is

= + QZp - YpR

: Vp' = Yp - PZp - XpR (C-2) -_:

w_ = 7.p + PYp - QXp

. where Xp, Yp and Z_ are the distances of the pivot from the
c.g., measured positively forward, to the right and downwards,

respectively. If we measure all distances from the pivot loca-

tion then Xp = -XcG, Yp = -YcG = 0, Zp = -ZCG and the velocity
of the pivot relatzve to inertial space can be written t

Up = U + u_ = U - XCG - QZcG

Vp = V _ Vp' = V + PZcG - XcGR (C-3)

= ' = W + QXcGWp W + Wp - ZCG

where U, V, and W are the components of the velocity of the air-
plane center of gravity.

The velocity of a point in the aircraft relative to the pivot
is

C-1

[
<
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•. u = X + QZ - YR i '

v = Y + RX - PZ (C-4)

"" w = 7.+ PY - QX

where X, Y, and Z are measured from the pivot to the point. By

-- adding equations (C-3) and (C-4) the velocities of the follow-

ing components are obtained relative to inertial space. The

indicated distances are measured relative to the pivot. 1

Velocit Y of Horizontal Tail Aerodynamic Center

UHT = Up + ZHTQ !
(C-5)

. VHT = Vp + XHT R - ZHTP !

WriT = Wp - XHTQ ,_

Velocity of Vertical Tail Aerodynamic Center i

UVT = Up + ZvTQ

vVT = Up + XVT R - ZvTP (C-6) I.,

wVT = wp + XvTQ I

_Velocity of Left Win 9 Aerodynamic Center - Body Axes

U_w = Up + Q (ZwA C + hlLwAc) + YwAcR i

V_w = Up + XwAcR - P(ZwA C + hl__nWA_) (C-7) "i

• t

' = Wp _AC Q + h 1WLW - YWACP -

LWAC !

where hlLwAC is the elastic deflection of the left wing aero-
dynamic center. The equations for the right wing are obtained '_;,

by substituting i_

YRWAC = -YLwAC
J

and hlRwA C = h ILWAC

C-3
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Velocity of Left Wing AerodYnamic Center-Chord Axes ,,

In order to compute wing angle-of-attack the velocity components

are required relative to the wing chord line. If the wing .j
chord makes an angle iw with the body centerline then

ULW = u_w cos iw - W_w sin iw

vLW = V_w (C-8)
i

wLW = W_w cos iw + W_W sin iw .

The equations for the right wing are obtained by changing the
subscript.

: Velocity of Left Rotor Hub - Body Axes

• m

u_ = Up + RY N - Ls ([NL + Q) sin iNL + QhlL
' (C-9)

V_L = Vp + L s(R cos iNL + P sin iNL) - PhiL

Q

; W_L = Wp - PYN - Ls (INL + Q) cos iNL + hlL --
/

where Ls is the distance from the rotor pivot point to the "

rotor hub and hl L is the deflection of the wing tip. The equa-
tions for the right hub are obtained by changing subscripts and

substituting YN = -YN.

Velocity of Left Rotor Hub - Shaft Axes

Since the rotor aerodynamic forces and moments are functions of

the shaft angle of attack and sideslip, the velocity components

are required relative to shaft axes. I

URL = U_L cos iNL - W_L sin iNL

VRL = v_L (C-10)

WRL = w_ sin iNL + W_L cos iNL

The corresponding equations for the right hub are obtained by --

changing the subscript.

C.2 Center of Gravity and Inertia Equations

Equations are required that express the overall aircraft center

of gravity position and inertias in terms of the centers of

1977016150-119
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gravity and inertias of the it,dividual mass components. In
order to do this a fixed reference point is chosen in the air-
craft defined by the intersection of the line joining the
nacelle pivots and the vertical plane of symmetry of the air-

" ' is taken at this
craft, see Figure C.I. A set of axes ?x'y'z

: pivot reference point, parallel to the axes OXYZ at the air- i
craft center of gravity. If the location of the aircraft
center of gravity with respect to the pivot reference axes is

' ' h f) and (£w, hw) are the x and z _(XcG_.,YCG' Z'CG) and if (_f, _
coordinates of the fuselage and wing masses measured from the " _ ,
pivot, then the following relationships are obtained between
the centers of mass of the components and the aircraft center
of gravity.

i Fuselage CG Relative to Aircraft CG
|

"_ Xf = _f 'I - - XCG

(C-ll)

' _, Xf = hf - ZCG

Wi_ng CG _elative to Aircraft CG

I
XW = _w - XCG

, (C-12)
Zw = hw - ZCG

Nacelle CG Relative to Aircraft CG

t

XNR = £ cos (iNR- _) - XCG

, (C-13)
XNL = £ cos (iNL - _) - XCG

ZNR £ sin (iNR- _) - ZCG

I

ZNL = £ sin (iNL - _) - ZCG

where z is the distance from the nacelle pivot point to the
nacelle c.g., and _ is the angular depression of the nacelle
center of mass b_low the nacelle pivot, when the nacelle is in
the down position, see Figure C.I.

C-5
t
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Aircraft Center of Gravity Position ....i

" By taking moments about the pivot, the aircraft center of '_
gravity is given by

q .

: , mf £f + mw %w (_) [ ] "":" XCG = m + £ cos(iNL-l) + cos(iNR-l) .. .
L

: (C-14) i

" ZCG = -- m - £ sin (iNL-_) + sin(iNR-X)

-: The equations of motion (Section 3 ) require the first and •
._ second time derivatives of the center of gravity position.

They are as follows:

Center of Gravity Velocity Relative to Pivot Point

. XCG = -£ NRsin (iNR-_) + iNLsin (iNL-_

.. (c-15)

jZCG = -£ NRCOS (iNR-X) + iNLCOS (iNL-X)
<

g.

: Center of Gravity Acceleration Relative to Pivot PointJ

XCG = -% Rsin(iNR-_) + _NLsin(iNL-X) + iNL cos ""

' ]_ (iNL-A) + iNR cos (iNR-X) --
(C-3_)

i

ZCG = -% iNRCOS(iNR-_) + iNLCOS(iNL-_ ) - iNLsin .-

(iNL__) _ 2 i
- iNRsin (iNR-X)

)

Pilot Station Velocities - Bod[ Axes

The velocities at the pilot's station are required in order
to drive the visual display. From Equations (C-3) and (C-4)
the components of velocity of the pilot's station in body •
axes are :

-w

C-6
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_. upA = Up + QZpA - RYpA

[. 1
vpA = Vp + R_pA - PZpA ._

i C-3 Pilot Station Acceleration - Body Axes

1 The pilot station acceleration is also required to drive the
: visual display. These accelerations are derived here.

! The velocity at the pilot's station is _

_A _
- _t _

Y

where _PA is the vector from the aircraft CG to the pilot's _.

station and _r--pA is the rate of change of the pilot's staticn ,_

with respect to the aircraft CG. _

The p_lot's station acceleration is 2

dt dt dt dt 2 6t 1
6 _ r_2_ 6 r_2A

= _CG +- (__X£PA) + --_ X (__X£pA) +-------2+ --_ X------
6t 6t 6t

2 _2_2A j6n 6_-PA ,n) - n r +

6t 6t 6t"

, C-7
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and noting that YCG and the time derivatives of XpA, YPA' ..

ZpA are always zero, the above equation yields the pilot's
station accelerations as :

XAERO+ (Q + PR)(ZpA -ZcG) + (Q2 + R2)(XcG _ %PA) ""axpA = m

+ YPA (PQ - - SQ 'cG- CG

_ = YAERO+ (P - QR) (ZcG - ZpA) + (R + PQ) (%PA - XCG)
aypA

m

2 2

" - YPA (R + P ) + 2 (PZcG - RXCG)

ZAERO
L

azp A - 1 (Q - PR) (XcG - £pA ) + (p2 + Q2) (ZcG _ ZpA)m

+ YPA (_ + QR) + ZQXcG - ZCG '

ZAERO
= etc.

where axc G m

and XpA = £PA, the distance from the pivot tc the pilot's
station

C.4 Aircraft Inertias

The aircraft roll inertia about the aircraft center of gravity

is, from the parallel axis theorem,

f w NL NR 2 2 2 2 2
Ixx = Ixx + Ixx + Ixx + Ixx + mfZf + mwZ w + 2mNY N + mNZNL + mNZNR (C-]

where If etc., are the inertias of the various components
xx'

about their individual centers of gravity.

C-8
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NL .N_
In the case of the nacelles the inertias Ixx, ±x_ are dependent

on the nacelle tilt angle, iN . These inertias are related to
the inertias of the nacelle with respect to a set of nacelle-

fixed axes O"xyz placed as shown in Figure 3.1. The re1-_tion -
ships are

N N N N 2
Ix x

Ixx O + (I_zO- ) sin - I sin= - Ixx° i_ XZo 2iN

J

I_y = I_y °

(c-18)
N N N N 2

' Izz = Izz ° + (Ixx ° - Izz o) sin iN + Ixz ° sin 2i N

o

= 1 ( -I ) sin 2i NINxz INzo cos 2i N + _ Ixx O zz O

Using equations (C-18) together with (C-13), (C-ll), and (C-12),
in equation (C-17), the roll inertia becomes

Ixx = If x + IW x + 2INxo + (INzo - INxo) (sin2iNL + sin2iNR )

2

- IN (sin 2iNL + sin 2iNR) + 2 toNYN + mfhfZfxz O

I I

. + mwhwZ w - mfZfZcG - mwZwZcG

.. - mNZNLZ_G - mNZNRZ_G

- _mN[ZNRsin(iNR - _) + ZNLsin(iNL - _

= if + iw + 2IN + (IN _ IN ) (sin 2 2
xx xx xx o zz o xx o iNL + sin iNR)

2

- IN (sin 2iNL_'.2iNR) + 2 mNY N + mfhfZfxz o

+ mwhwZw - _mN [ZNR sin (iNR- _)+ ZNL sin (iNL - _)]

0

since the terms containing ZCG sum to zero.

C-9
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Similarly

Ixz = Tf-xz+ Iwxz + INxz (COS 2iNL + cos 2iNR)

+ 1 (iN - IN ) (sin 2i + sin 2i ) + m £ Z
2 xx o zz o NL NR f f f

+ mwZw£ w + £mN [ZNR cos (iNR- _) + Z_L COS (iNL- A)J

w N _Ciz_-i_,:IL-_ �iz_-_ +_C_zzoI_o_
N 2 2 N

+ (INxo___- Izz o) (sin iNL + sin iNR)+ Ixz ° (sin 2iNL

+ sin ZiN R) -(mfhfZf + mwhwZ w) + mN£ [ZNL sin (iNL - _)

2

+ ZNR sin (iNR - _)] + 2toNYN

Similar expressions are obtained for Iyy and Izz and these are
presented in Appendix E.

_e

C-IO
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APPENDIX D - CALCULATION OF SLIPSTREAM-IMMERSED WING AREAS

The wing areas washed by the rotor slipstreams are required in
the calculation of wing lift and drag. These immersed areas

: depend on rotor shaft inclination, wing angle of attack and side-

- slip, and rotor thrust. The equations presented in Appendix E

for the immersed areas SiL and Si R were obtained as follows.

i

z

i
" The above sketch shows a rotor under conditions of combined

{ angle of attack (_T.L.) and sideslip (S). The resultant angle
of attack of the shaft is given by

_R = cos-l( c°s _T.L. cos 8) (D-I)

If the rotor shaft is inclined to the fuselage centerline at

angle iN and the fuselage is at angle of attack _f then

eT.L. - af + iN (D-2)

The rotor "sideslip" angle, _, is defined by

= Tan- 1 Tan 8 (D-3)
Sin _T.L.

and is the angle shown in the sketch.

Figure D.I presents four views of the geometry, of rotor slip-
stream/w_ng planform interaction.

Figure D.l[a] is a view of the plane taken through the rotor
shaft parallel to the aircraft vertical plane of symmetry. The

D-I
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line PT is the wing chord, the distances PC and h_ are the hori- •
zontal and vertical coordinates of the pivot measured from the

_ wing leading edge, and £ is the spinner-to-pivot shaft length.
Z

Figure D.l[b] is a vlew taken normal to the rotor disc plane.

In this view, the traces of the slipstream on planes taken
through the wing leading and trailing edges parall,;l to the

disc plane appear as circles. This assumes that th_ slipstream "
is a sheared circular cylinder.

i

: Figure D.l[c] is a section taken in the plane containing the .

rotor shaft and the freestream velocity vector V®. The angle
E _s the deflection of the slipstream relative to the freestream

: direction. Planes are taken through the wing leading and trail-
ing edges parallel to the rotor disc. These intersect the rotor
shaftline at the points O and T, and intersect the slipstream

centerline at the points O' and O". These points enable the
slipstream traces shown in (b) to be constructed.

Figure D.l[d] is a view taken perpendicular to the wing surface
showing the areas washed by the slipstream. For convenience,

this view combines the immersed areas of both left and right
wings. In general, the imprint of the slipstream on the wing

will be bounded in the chordwise direction by curves lines;
however, the approximation is made that these lines are straight.

The immersed area of the right wing panel is (assuming that the
tip is immersed), .

= 1 (PM + TN)c
SiR

l(pR + RM + TS + SN)c
= _ (D-4)

From Figure D.l[b] PR = 00' sin _ (D-5)

From Figure D.l[c] OO' = (Z-OD) Tan (_R-¢) (D-6)

From Figure D.l[a] OD = PC cos (iN-iw)-hpsin(iN-i W) (D-7)

From Figure D.l[b] RM = R'M' =/Ds2 - 0;R ,2 (D-8)

44

From Figure D.l[b] O'R' = OO' cos _ + OP (D-9)

From Figure D.l[a] OP = PC sin (iN - iW) + hpCOS (iN-i W) (D-10)

D-2

I
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These equations define the leading edge intersection PM. If

RM is zero or negative, the slipstream does not intersect the

leading edge and the wing is considered to be unaffected by the
slips tre am.

t

For the trailing edge intersection, TN:

TS = 00" sin _ (D-II) ,:
J

OO"= (£ + c cos (iN-iW._-OD) Tan (_R-¢) (D-12) !

SN = S'N' = __D - O"S'2 (D-13) i
4 i

O"S' = OO" cos { + TT' (D-14) ;

. TT' = OP - c sin (iN-i W) (D-15)

If we write

_i = PR, _2 = RM, _3 = TS, and _4 = SN

then, using the above equations,

_i = [Z-PC cos (iN-iW)+ hp sin(iN-iw)] Tan(_R-_)sin _ (D-16)

and

_ s -{[g-PC cos(iL_-iw)+hpsin(iN-iw)]Tan(_R-¢lcos ; ,

+ PC sin(iN-i W) + hpcos(iN-i W) ; (D-17)

The corresponding equations for _3 and _4 are obtained by re- •
placing PC in (D-16) and (D-17) and (PC-c)

Thus the immersed area of the right wing panel is given by

Si R = _I c (_i + _2 + _3 + _4) (D-18) Jr

From the symmetry of Figure D.l[d], SN=BS and RM=AR. The total

immersed area of both wing panels is /

Si T = _i c (AM + BN) - 21 c (2_2+2_4)=c(_2+_4) (D-19) _

and therefore the immersed area of the left wing is obtained
from

SiL = Si T - Si R (D-20)

The above equations correspond to those presented in Appendix -- ;
E for calculating immersed wing area.
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APPENDIX E ,, ,

The equations, data, and control diagrams required for FSAA
simulation of the Boeing Vertol 1985 Tilt Rotor Transport are 4

• presented in the following pages. The simulation block diagram .
is shown on page E-6. Each element of this diagram is numbered.
The reference table on page E-2 lists the block diagram element

i_. number, the function of the element, and the starting number .,

of the pages containing the equations for the element.

l Data for the simulation is provided in Appendix F.
, L_

! I

. a. i
!

'i

• i

E-1

< i
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.- of Gravity

Wing on Rotor Interference E-59
Rotor/Rotor Interference E-60

Rotor Equations E-61

Rotor Angular Rate Transforms
Thrus t

Ground Effect

Power
Normal Force

Side Force

Hub Pitching Moment

Hub Yawing Moment
Rotor Force and Moment Calculation

Rotor Force and Moment Resolution E-69
Hub Moments - Nacelle Axes

Resolution of Rotor/Nacelle Forces to Body Axes
at Pivots

Le ft Rotor

Right Rotor

Wing Vertical Bending E-72

Right Wing Tip Deflection
Right Wing Aerodynamic Center Deflection

E-3

[ ""
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; TABLE OF CONTENTS ..

(ConE' d)

<

Wing Torsion E-74

_ Left Wing Twist at Tip
: Right Wing at Tip .o

Total Force and Moment Summation About Center of _
Gravi ty E- 75 _

Basic Equations of Motion E-76

Preliminary Calculations ""
: Fuselage C.G. with Respect to Aircraft C.G.

Wing C.G. with Respect to Aircraft C.G.
Nacelle C.G. with Respect to Aircraft C.G. --
Inertia Terms

_ Roll Equation

Pitch Equation
Yaw Equation

Right Nacelle Actuator Pitching Moment Equation
Motion of Aircraft Mass Center '

Euler Angle Calculation
Aircraft Condition Calculations E-83 :

Ground Track

• Northward Velocity
Eastward Velocity
Downward Velocity

_ Pilot Station Accelerations (Body Axes)
: Pilot Station Velocities (body Axes)

Gus t Model

Preliminary Calculations Preprocessor E-85 ;

. °

o

E-4 _.
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ELEMENT PAGE
NUMBER BLOCK DIAGRAM ELEMENT NAMES NUMBER -_

L i. Control Mixing and Actuator Dynamics E-7
2. Stability Augmentation System E-9

3. Density Calculation E-12

" i 4. Engines and Thrust Management System F-13 :
L 5. Rotor Control Coordinate Axis Transforms E-17

6. Center of Gravity Calculation E-18 _

i 7. Aerodynamic Coordinate Transforms E-20 ,
_J 8. Wing Equations (Including Interference) E-23

9. Wing A.C. to Elastic Axis Transform E-40

i0. Wing Force and Moment Resolution to Center E-41

i of Gravity
- Ii. Horizontal and Vertical Tail Aerodynamic_ E-42

(Including Interference) i
12. Tail Force and Moment Resolution to Center E-50

of Gravity
13. Nacelle Aerodynamics E-52

14. Landing Gear Equations E-54
15. Fuselage Aerodynamics E-57
16. Fuselage Force and Moment Resolution to E-58

Center of Gravity (Includes Landing Gear)
17. Wing/Rotor Interference E-59

18. Rotor/Rotor Interference E-60

19. Rotor Aero Input Equations E-61 -
20. Rotor Equations E-62
21. Rotor Force and Moment Resolution E-69

22. Wing Vertical Bending E_72

23. Wing Torsion E-74
24. Total Force and Moment Summation About E-75 t

Center of Gravity

25. Basic Equations of Motion E-76
26. Euler Angle Calculation E-82
27. Aircraft Condition Calculation and Ground E-83

Track

28. Gust Model E-84

29. Preliminary C_Iculation (Preprocess) E-85 i
[

i

INDEX TO BLOCK DIAGRAM EQUATIONS

i

i ,

: E-5
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NACELLE, FLAP, FLAPERON, & SPOILER CONTROLS

NACELLE ACTUATOR DYNAMICS TO TM SYS.
0.0

,L s I i ' , 1+ ' 2 , I

•CE_ I " I I I - IS+2C S _
BEEP .__ --._L___ _ I • • I _ . I

(.zLo_.z.PuT, I */SEC I I l t, _-_.,,
I I I ] IN,
ACTUATOR I I -"

_TE i I
LIMIT I | --

NACELLE LOGIC: IF NACELLE BEEP >0.0 AND l

_S_=l,<90* SET AUTH. LIMIT I

TO"I_ I AND LATC, H UNTIL |

NACELLZ BEEP _0.0 |

FLK ,'TION

_ACE'-'-E_= _ I/ I--" --I
is_r (USEroR_L iNczo_c_" I V _ / I

SCHEDULES ) I-- _ I L _ .c

i,l "-N,=_Jl I _ --°"
NOTE: _NL = _NR = 10 RAD/SEC

_NL m _'_R m 1.0 (critical)

DEADBI._D

FLAI"_.RON LEFT
VS FLAPERON

TAT. STICK

I -
1 AUTHORITY _*

LIMITS

@ - RIGHT

FLA_ERON

_s+SAS

PILOT CONTROL

I SPOILER _SPRW

[

i' E-8
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D_NSITY CAIEUr_A.TIONS I

°1
T (OF) =59.-o 003561 h

• tT (OF)=89.8-. 003869h T (OF)=103 - .003803h

5.2561

6 = (1-.000006875 h)

0 = -''__°FJ+ 459.69
518.69

qh = 6/8

a = 1116 /8

M = V/a

p = .0023769 _h _EXIT I

INPUT: h

ATMIND 0 STD ATMOS _.

1 HOT ATMDS

2 TROPICAL ATMOS

E-12
OUTPUT: _, 8, _h' a, M, 0

J
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TEA n TPs/0. Ji NLZMmO I

( ' 1 " ,,:,/6/_ " I"_';'-JiTl
ms WDTII:_ &16/_ @ TEA, l

, x T/8-Tma x SHP"

. "" M-O

mm

"T:A"TI0 T/el! (--
• . NLIM"'I SHii" X w,M I

J ,,o

. NzlV'l

-- 0 NI I

i /,.o_,<_, '1 YES /fN, II/'_ • INI//'%/ _

I T_A-TI_I [.... lllzl/_-{' , M _I

I ill .T.M" 2 max _j

.i .o _i- !
NleI tN-N'_--# I ' N_ _ @ TEA,M

,, max t

.zl/ili Nz

NO 7

7

i

• o 1

• [" I II

• , , _,lzs

,<

"" ENGINE ROUTINE POlaR AVAILABLE \
h

I' -- E- 13 "i
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, 'ENGINE ROUTINE POWER AVAILABLE
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FLOW CHART FOR SUBROUTINE ENG 1 OF ENGINE ROUTINE

r E-15

/
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&. ROTOR CONTROL COORDINATE AXIS TRANSFORM

LEFT

l! ! !

Ale L = Ale L cos 0p + BIc L sin _p

l! t !

! BIc L =-AIc L sin #p + BIc L cos ,p i

TI II

AIcL = AICL cos _HL - BICL sin _HL

tl • If

B1 + B1 cos _
CL = AIcL <sin _HL CL HL

NOTE: _p is the control phase angle. _p is positive

for the control axis moved opposite to rotor

rotation.

RIGHT

It ! !

Ale R = Ale R cos _p + BIc R sin _p

I! ! !

BIc R =-AIc R sin _p + BIc R cos _p

II II

AIc R = AIc R cos _HR + BicR<Sin _HR

" B" COS r
BIcR =-AIcR <sin _HR + ICR *'HR

E-17
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CENTER OF GRAVITY CALCULATION ,.

C.G. LOCATION RELATIVE TO PIVOT I'

,4

mf£f + mw£w + _ (3)Ice s (iNL -X) + cOs (iNR_X)I ..XCG = m

I .

mfhf +m mwhw- £ I_)[ sin (iNL-X)+ sin (iNR-X)] "
• ZCG =

C.G. VELOCITY RELATIVE TO PIVOT ..

' XCG = - £ NL sin (iNL-X) + iNR sin (iNR-I) ..

ZCG = - £ NL cos (iNL-X) + iNR COS (iNR-I) .,.
7 •

C.G. ACCELERATION RELATIVE TO PIVOT "'
m

XCG = - £ INL sin (iNL -i) + i2NL cos (iNL-I)

+ iNR sin (iNR-X) + "2 ]
INR cos (iNR-X)

•. [.. .2ZCG =- _ (_1 INL cos (iNL-\)- iNL sin (iNL-I)

+ ZNR cos (iNR-l) - INR sin (iNR-l ._

E-18

;

[ ,
t

f

i i,
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_o FUSELAGE PIVOT VELOCITY

i °

Up = U - ZCG q - XCG4_

Vp = V + ZCG p - XcGr
J

Wp = W + XCG q - ZCG

E-19
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lw

VELOCITIES OF AIRCRAFT COMPONENTS

LEFT WING A.C. VELOCITY - BODY AXES ""

!

ULW = Up + ZWACq + YWAC r + q hlLWA C ..

! I

VLW = Vp + XWAC r - ZwAcP - p hlLWA C ,_

!

WLW = Wp - YwAcP - XWACq + hlLwA C

ROTOR WING A.C. VELOCITY - BODY AXES

!

URW = Up + ZWACq - YWAC r + q hlRwAC ._

!

VRW = Vp + XWACr - ZwAcP - p hlRWA C

WRW = Wp + YwAcP - XWACq + hlRWA C

LEFT ROTOR HUB VELOCITY - BODY AXES "

!

URL = Up + r YN - LS sin iNL (iNL + q) + q hlL

!

VRL = Vp _ L s (r cos iNL + p sin iNL) - phlL

! . _

WRL = Wp - p YN - LS(iNL + q) cos INL + hlL

RIGHT ROTOR HUB VELOCITY - BODY AXES

!

URR = Up - r YN - LS sin iNR (JNR + q) + q hlR

! o

VRR = Vp + L s (r cos iNR + p sin INR) - p hl R

!

WRR = Wp + p YN - LS (iNR + q) cos iNR + hl R

E-20

1
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.. LEFT ROTOR HUB VELOCITY - SHAFT AXES

! !

"" URL = URL cos iNL - WRL sin iNL

I

• -- ! i ,

VRL = VRL

! V _

WRL = URL sin iNL + WRL cos iNL
q
!

RIGHT ROTOR HUB VELOCITY - SH_T AXES

! ! °

URR = URR cos iNR - WRR sin !NR

VRR = VRR

! !

WRR = URR sin iNR + WRR cos iNR

LEFT WING A.C. VELOCITY - CHORD AXES

! !

ULW = ULW cos iW - WLW sin iw

!

VLW = VLW

! I

WLW = ULW sin iw + WLW cos iW

RIGHT WING A.C. VELOCITY - CHORD AXES

URW = URW cos iW - WRW sin iW

l

VRW = VRW

! !

WRW = URW sin iw + WRW cos iW

" i

E-21 i

_w
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HORIZONTAL STABILIZER A.2. VELOCITY - BODY AXES ""

no 3

{ -

UHT = Up + .fq

VHT = Vp + XHTr - ZHT p

WHT = Wp - XHT q
Q_

[

VERTICAL FIN A.C. VELOCITY : RIGHT FIN (BODY AXES) _ .! :

t_

UVTR = Up + ZVT q - YVT r ..

VVTR= Vp + XVTr - ZVT p ..

WVTR= Wp - XVT q + YVT p '"

LEFT FIN

UVT L = Up + ZVTq + YVT r

VVT L = Vp + YVT r - ZvTP

t _

WVTL = Wp - XVT q - YVT p -.

t '

E-22 I •

[

t_ o J
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i WING AERODYNAMICS ':

CALCUI_%E ROTOR INTERFERENCE TERNS:
, .

RR RR _T-_" /

R = + 5'F2 + SF 2
RR R R :.

VRR
V, =

VU*R + 2 V,R V3*R COS TRR + V2*R V2*R = i (Solve for V,R) ';

fV*R sin 1
= Tan-i rRR

PRR LV,R + v, cos TRR jR

cos (TRR - aRR )
CTSRR =

cos (TRR - aRR ) + V_ R
4

TLR = _LR + Tan-I -_L

RLR = yTL + NF2 +SF2L L

VLR

V* L = ._RLR I+l 02_oA

V,L cos TLR + v2, V 2 = i (Solve for v, )+ 2 v,3LV4*L L L L

- _PLR = Tan-1 F v*L sin TLR R!- LV-_L + v, L cos _L ,

cos ('_LR - _*LR)
" CTSLR =

cos (TLR- _LR ) + Vi' L
4

E-23

2
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= Tan-I IV /(WRR+ e U )] -
HR RR WRR RR

USED IN ROTOR

CONTROL TRANS-

= [ )] FORMATIONS ""
_HL Tan-i VRL/_RL + eWRL URL

= (_HR + _HR ) .5
w

7R = ( RR+ %R ) .S

ep -- (_PKR+ £PLR)'5 1

-- USED IN TAIL AERO-

CTS = (CTsRR + CTSIR) .5 DYNAMICS,

iN = (iNL + iNR) .5 1 USED IN WING/ROTOR
CLW = (CLsRW + CLSLW) .5 INTERFERENCE.

(I-CTS)

gRi = [Ls - PC cos (?N - iw) + hp sin (TN - i )] tan (_R -- sinw - _P)

D 2

_R2 _-- - [L S - PC cos (TN - i ) + h sin (iN - i )] tanw p w

(_R - gP) cos _ + PC sin (i N - iw) + h cosP

(i-N _ iw)}2

IF: : = 0 or Imaginary; S i = 0 and SiL W ,_R2 RW = 0

also (CL_i/ C L ) -- 0 and ( /CLa) = 0 0RW CLa i LW "

Form : by replacing PC in _R1 equation with (PC - c )_R3 w

Form $R4 by replacing PC in _R2 equation with (PC - c )W

IF:_R4 = 0 or Imaginary; SiR W = 0 and SiL W = O,

also (CL_i/CLa)RW = 0 and (CLai/CLs)LW _ 0.0

IF: UNBRELLAS OPEN; SET C = 0.0
LU

UMBRELLA LOGIC:

, IF iNREF < FiN or qF > 8.479 ibs/ft 2 set umbrellas

closed (hysteresis FiN + i=; qF + .i ib/ft2).

1977016150-153
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SiRw = Cw/2 [_RI + _R2 + $R3 + _R4 ]= S_
_m "R

(Si/S)Rw = 2 (SiR/Sw)

Si T = Cw [%R2 + _:R4]

S - Si = !

iLW = S_T R SiL li'

(Si/S)Lw = 2 (SiL/Sw) j-
(ARi)LW = (SiL/cw2) !

(ARi)RW ( ic2 )= SiR ,_

ARw = SwlCwa (FROM PREPROCESSOR)

(CLc'i/CLa) LW _ "= !

,_ + CL_ w [I/(ARi)LW - I/ARw]

"7"

(CLcti/CLe)RW = n + CL_ w [I/(ARi)RW - I/AR ]W

K_ L V* + (C /CL_ ) v*= L Lei LW I,

K1 R = V_ + (CLai/CL,_)RW v_

V* + v*
R R

1977016150-154
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-qs = [1/2 o (u2 + v 2 + w 2) + (TL + TR)/2A]

qs : [1/2 0 (U_w + V_W + w_ W) + TR/A]
RW _

t_

qs = [1/2 0 (uLW + \_- + w 2 ) + T /A]
LW LW LW L

E-26

b
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f

WING ANGLE OF ATTACK AND SIDESLIP
e_

aLW 0 = sin i " + W 2 + e
ULW LW tLWAC. .

u_w+ W_w + _tRWAC •

8LW 0 = sin i VLW ,, ,U_w+ V_w+ Wtw

c_LWSS 0 = aLW 0 - epL R

aRWSS 0 = aRW 0 - cpR R *.

aW = (aLWO + aRWO)/2

_LW RIGID = sin - _PLRU_w+ W_w

-_ WRW j
aRW RIGID = sin

U_W + W_W EPRR

!

_LWO = aLWO - iw - 8tLWAC

!

_RWO = aRW0 - iw - _tRWAC

E-27
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CALCULATION OF INCREMENTAL LIFT, DRAG AND MOMENT COEFFICIENTS -o

CALCULATE :

CLLW0 = CL @ _ = aLWss0' 6 = 6aLW + 5f, 5Sp = 5Sp L

CDLW0 = CD @ e = _LWss , 5 = 5 + 5f, 6 = 60 aLW SP SP L I

C =C @ _=_ , 6 = 6 + 5 , 6 = 5

LRW 0 L RWss aRW f SP SP R
0

CDRWo = CD @ _ = c_RWss , 6 = 5 + 6 6 = 6aRW f ' SP SP R
0

C* =C @ _ =a 5 = 5 + 5 6 = 5

LLW 0 L LW 0 aLW f SP SP L

C* =C @ _=_ , 5 =5 + 5 , 5 = 6
DLW 0 D LW 0 aLW f SP SP L

C* =C @ a = _ , 5 = 5 + 5 , 6 = 6
LRW 0 L RW 0 aRW f SP SP R

C* =C @ _=_ , 6 = 5 + 5 , 5 = 5
DRW 0 D RW 0 aRW f SP SP R

CLo = CL @ _ = aF+i , 8 = _f , 5Sp = 0

USING THE FOLLOWING EQUATIONS:

ACL_ = a76 (0°<_ 5 ! 52 )

= a8 + a95 + al0 f2 (52< 5 <_ 53 )

82 (5 :.5 )
= all + a12_ + a13 3

ACD05 a295 + a30_2 (0 <_ 5 <_ _5 )

= a31 + a32_ (5 > 55 )

E-28

i
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_CLs P (0°< 6Sp < 6Sp I).. = a146SP -- _

)

: = a15 + a166SP + a1762Sp (6Sp > 6SPl)

AC D = b06 S + b162
SP P SP

F = FI + F26 + F362 (0°< 6 < 64 ) '

= F4 + F56 + F662 (6 > 64 )

_L = a0 + el6 (0°i 6 ! 61)

= a 2 (6 > 61)

_NL = a3 + a46 (0O<_ 6 <_ 61 )

= a5 (6 > 61)

If eNL ! _ ! eNL calculate:

I

CL = a6 + CLa W _ + ACL6 + F ACLs P

= CL - F
CLWI ACLsp

CLW2 = CLWI - ACL6 (_ _> a.).

CLW2 a2 (a < a 3)
= a6 + C / a 3 + a23 + a24 _ + a25

Law

o CLWI )2+ a26 CiW + a27 C_W + a28 ( - CLW 2CD = CDOw 2 1

+ ACDo 6 + ACDs P

E-29
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If eNL+ < a _< eNL + a18 calculate: ""

C' = a + CI e+ + AC + F AC

LNL 6 Le W NL L6 LSp ._

+
a = e - e + a
DUM NL 0 -,

&C = + a2 + a cL2
LNL a20 i eDUM 22 DUM

CL = C' +
LNL ACLNL

CLW 1 = CL - F ACLs P

CLW 2 = a6 + CLa W e (e <_ a0)

= a 6 + CLef a0 + a20 + a21 e + a 22 _2 (_ > a0 )
W

= + a2 C_W 1 a28 CLWICD CDOw + a26 C_W 2 7 + ( - CLW2 )2

+ + AC D
ACDo_ SP

and print stall warning.

+
< a < 90 ° calculate:

If eNL + a18

CL = (a 6 + C / a+ + _C + F &C ) (90 ° - a)/(90 ° - a+ )
L_ W NL L_ LSp NL - a18

_2 = a0 + a18 "|

CLW 1 = CL - F ACL SP (90° - _)/(90° - _L - a18) (_ _ _2 )

= C L - F AC L (90 ° _2)/(90 ° +- - _NL - alS) (_ > _2 )
SP

CLW 2 _ a2= a6 + C _W a0 + a20 + a21 _ + a22 (a _< _).

= a6 + CL_ a0 (a > :_2)
W

E-30
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l - 2
: "" + a27 C_W I + a28 [CLW I

CD I --"CDO W + a26 C_W 2
m_

+ aCDo +5 bCDsp

C D = CDI )

= C + ('_" - CD I) ('_" - _2)/(90° - _2) (cx > _2
CD D 1

and print stall warning"

< _L calculate:

If a3 - al9 < t + &CL 6 + F gCLs?

, =. a6 + CL_w _L
CLI_L

_DUM + a25 _DUM
+ a24 _DUM

_CLN L -- a23

= C' +
CL LNL &CLNL

= CL -- F &CLsP C_2
CLw I _ + a25

/ _NL + a23 + a24

-_ a6 + CL_ _ CLw2)_
CLw 2 _ + a2s (CLw I

C z + a27 CLwI

CD = CDwo + &26 LW 2

+ _CDs P
4- &CDo 6

and print stall warning"

If -90 ° i _ < a3 - a_9 calculate:

_i e_L - a19= +F _C

I _L �&CL6LS?
C,' = _6 + CL_ w
5NL

,i9770'16'1
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; aDU M = a - aWL + a3 -"

2

ACLN L = a23 + a24 aDUM + a25 aDUM _

C L = C' + (a>___1)
LNL ACLNL

wt

= C' (90 o + _)/(90 ° +el ) (_<al)
LNL

w.

aDU M = 2a 3 - a19 - aWL

2

ACLNL = a23 + a24 aDUM + a25 _DUM ..

= C' + - F ACLs
CLwI LNL ACLNL p ..

CLw2 a6 + CLaw a3

CDI = CDWo + a26CLw2 + a27 CL2wI + a28 (CLwI-CLw2)2

+ _C D +
o6 ACDsp

CD = CDI - (I-CDI) (_ - a3 + a19)/(90 ° + a3 - a19)

and print stall warning.

E-32
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i CALCULATE : .i.-m

,. CML W = , 6 = 6f + 6 ,_
i = CM @ a aLWss 0 aLW ,_

CMRW = CM @ a = aRWss , 6 = _f + _
0 aRW

CMLw 0 = CM @ _ = _LW 0 , 6 = _f + 6aL W i

,w

. CMRw0 = CM @ c_ = aRW 0 , 6 = 6f + gaR W ,-,

AS FOLLOWS :

If _ < a < _
1 - - 2 i

Calculate C' = b 2 + bM 3 _

_CM6 = b 4 4- b 5 _ + b6 62

CM = C_ + ACM6

If _ >
c_2

C_ = b 2 + b 3 _2 + ACM6 L

' (90 - a)/(90 - _2)CM = CM

If _ < al

C'M = b 2 + b3 _i + ACM

!

CM = CM (90 + _)/(90 + _i )
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CALCULATE: .. _

! ! I t! t !

, CLLw = CLLw0; CDLw = CDLw; CMLw = CML W -*

t ! It! t!

CLR W = CLEw0; CDRw = CDRw; CMRw = CMR W

C'L'LWMAx = CLMAx + ACL_ + ACLs P

r

C'LRwMA x = CLMAx + ACL 6 + ACLsp

C _' = C "k _l R C "k l C _LR W LRW0; C = ; = r'*'W DRWO MEW _MRw 0

CLLw = CLLwo; CDLw WO CMLw W0

C*
LLWMA X = CLLWMA x

C* = C"
LRWMAX LRWMAX

CL = CL 0 (a.g/a):., / "_/l - M 2

,,IGE ''' _"IGE= '''
CLLw = CLLw (ag/_)w/I_-M 2 ; -LEw CLEw (ag/a)w/I_-M 2

,,
LLW = CLL W(ag/a)w/ _ ; LR W = LR W (ag/a)w/I__2
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'i' "G (c_GE
_. &C _ E ,,, ,,,

= K - CLLW)2/_AR ; &C '_GE = K99(c,_GE _ CLRW)2/_AR ;DLW 99 LLW w DRW LRW w

IGE IGE IGE IGE

._ _c_w=_ (c_ - qLw_/_ ;_. = _ (_, - c,_>_/_w DRW 9 LRW L w

IGE IGE IGE
II 11 II II

IF: CLL W > C_L W MAX ; SET ACDL W = 0.0 & CLL W = CLL W MAX

IGE IGE IGE '
11 II II _ II _ It

IF: CLR W _ CLRW MAX ; SET _CDR W 0.0 & CLR W CLRW MAX

IGE IGE IGE

IF: C* > C* ; SET &C* = 0.0 & C* = C*
LLW -- LLW MAX DLW LLW LLW MAX

IGE IGE IGE
IF: C* > C* ; SET &C* = 0.0 & C* = C*

LRW -- LRW MAX DRW LRW LRW MAX

IF: (ag/a) > 1.0 ; SET K99 =-1.0

(ag/a) <__].0 ; SET K99 = _-i.0

CALCULATE

IGE
C" -- C"
LLW LLW

,,, IGE
C" = C + _C"
DLW DLW DLW

IGE
C" = C"
LRW LRW

,,, IGE
C" = C + _C"
DRW DRW DRW

IGE
C* = C*
LLW LLW

IGE
C* = C* ' + _C*
DLW DLW DLW

IGE
C* = C'
LRW LRW

IGE
C* = C* ' + 3C*
DRW DRW DRW
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CLSLW AL LW (CLL W cos ePLR - C_.. slnuuw PLR )

CLLW SLR
LId

CLSRW = K'AR {(SS-_-i)RW '"'LRW cos _PRR - C"DRW sin _PRR )

Ic l ,, +c,,
CDSLW AL_ _ (CLL W sin epL R DLW COS ePLR

)
LW

E ]}+ C_L W (i - CTSLR) -I
LW

CDSRW AR (CLR W sin EpR R + C"DRW cos cpR R)RW

+ - CTSRR) -
RW

" - I c 1}= (CML W) + C* (i ) 1 -MI,W CTSLR _'-
CMSLW AL LW LW

CMSRW = KA R CMRW) MRW TSRR ) S ;RWRW
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' AC_s poWER SLW TS LLW I LW[CssRW-(i _TSl C{RW] [z-I/2t_!)RW]- - 1

= I/4_ -(l - CTS) C" I [l -I/2(_!),RW]

ACNs pOWER CDSKW DRW 1_(_ _ _TS) C* ] tl -i/2(S--i}LW]
- [CDSLW DLW S

._ _ + (Kf)
c ) ( I - C_s) 8_ _ 2b W j+ K 2= (K20 _ L

C_SW

,,C,uw- c* ) - _Czs" .. LRW YAC+ POWER

--2 + IKN) (CDR w DLW

= (K22 C ) (1 - CTS ) B[ _ 2bN I " 1

CNs w L . _ ] --

-[C* sin (_ - i ) + C* sin (zW <_LWO) Y_C
LRW RWO W LLW

+ ACNs pOWER
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SPECIAL CONDITIONS (FOR UMBRELLAS OPEN)

IF: UMBRELLAS CLOSED; GO THROUGH _[NG EQUATIONS

IF: UMBRELLAS OPEN; CALCULATE THE WING FORCES AND MOMENTS AS
FOLLOWS:

XTM = fe u (I-C ) [ -ULw ]AERO %LW TSLR[i LWi �l

xRW = fe (I-CTSRR) [ -URw ]
AERO u qSRW - IURwI+.I

LW

YAERO = 0.0

RW

4 YAERO = 0.0

zLW'AERO = TL (D/T) L

GO TO WING BENDING
RW'

ZAERO = TR (D/T)R

LW LW I

MAERO = -X c ZAERO + (M/T) L TL
LW RW

ZAERO & ZAERO FROM

RW RW WING BENDING

MAERO =-X c ZAERO + (M/T) R TR
2

_AERO = (bw/2) ZAERO 1-(Si/S)R_ - ZAERO I-(Si/S)Lw

2 2

W

NAERO = 0.0

IF: [h/D]EFF_ 1.3; (D/T) L = KDI [h/D]_F F + KD2 [h/D]EF F + KD3;

LR _?-- LR T-- LR T--

& (M/T) R = KMI [h/D]_F F + KM2 [h/D]EF F + KM3

T LR T LR T
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IF: [h/D]EFF > 1.3; (D/T) L = KD4; & (M/T) L = KM4
LR _--_ T

= EFF + EFF KD3
IF: [h/D]EFF_ 1.3; (D/T) R KD 1 [h/D] 2 KD2 [h/D] +

RR _ RR _-- RR T

& (M/T)R = KM 1 [h/DI_FF + KM 2 [h/DIEFF + KM3__ i

T-- RR T-- RR T

IF: [h/DIEF F > 1.3; (D/T) R = KD4; & (M/T)R = KM_44

RR _ T
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FORCE AND MOMENT TFANSFORM_TIONS ""

FROM WING A. C. TO ELASTIC AXIS

PITCHING MOMENT

M RW = C SW Cw - X ZRW
AERO MSRW qSRW _'- WAC AERO i

+ Z XRW
WAC AERO

MLW = C SW cw ZLW
AERO MSLW qSLW _'- - XWAC AERO

+ Z XLW
WAC AERO

VERTICAL FORCES

[ 1 swZRW' = -CLsRW - C _' ---AERO DSRW RWO qSRW 2

ZLW' = -C - C a'
AEZO LSLW DSLW LWO qSLW 2

• og

NOTE: ZRW' & ZLW' ARE USED IN VERTICAL BENDING EQUATIONS.
"* AER0 AER0
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WINe FORCE & MOMENT RESOLUTION - BODY AXES @ C.G.

xL w r ] Sw
= '-C + C a ' qs

AERO L DSLW LSLW LWOJ LW 2

RW -CDSRW + CLSRW aRWO qSRWXAERO =

AERO = DSLW LWO qSLW 2--
I

RW [ ] SWYAERO = L-CDsRW 8RWO qSRW _--

ZAERO
FROM VERTICAL BENDING

_ RW

ZAERO

W

"_'_AERO = _.S;_ qs SW bw

W I,W RW /zLW RW )
MAERO = MAERO + MAERO + XCG _ AERO + ZAERO l

N W = C q S b
AERO NSW S W W

NOTE: OBSERVE WING SPECIAL CONDITIONS.
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HORIZONTAL TAIL AERODYNAMICS
4,

WING AND TAIL ALTITUDE - GROUND EFFECT

hwc/4 =-ZDowN + (XwA C - XCG) Sin % + (ZcG - ZWAC) cos %

hTc/4 =-ZDowN + (XHT - XCG) Sin % + (ZcG - ZHT) cos e .r

HORIZONTAL TAIL ANGLE OF ATTACK '

ZAC = XWA C - XHT (FROM PREPROCESSOR)

GEF = [b_ + 4(hTc/4- hwc/4)2]/[b2w + 4 (hTc/4 + hwc/4 )2] -',

IF: ep > _ + de/d_ (_W - Z /U2)o AC

then E = e (i - GEF)/ - M 2
P

< a + dc/d_ (_ - _ W/U 2)
IF: £p o W AC

then £ = c o + dc/da (a_# - %AC W/U2) (i - GEF)/_I M z

WHERE a = = @(
o -o SfL + _fR )/2, dc/da = de/da@ (°fL + °fR )/2

-I

_HT = Tan (WHT/UHT) - c + iHT (U<O)

= Tan -I (WHT/UHT)+ iHT (U>O)

This form for a}lT is to be used for resolution of forces only.

IF: IeHT I > 180 ° then calculate _HTfrom

aHT = -(sign _HT)360°+ aHT

and use this value to obtain the forces and moments.
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HORIZONTAL TAIL LIFT AND DRAG

%

eHT C_HT + "rHT _e

- 2 ° ) + 6e
_HT+ = (eHTsTAL L THT

_HT_ =-(_HTsTAL L - 2°) + THT _e , .

CL_ = CL_HT (ag/a)HT/_

Where (ag/a)HT = f(hTc/4)

^

IF: aHT_! ae ! eHT+HT

CLH T = CL_ aeHT

2

CDHT = CDOHT + CLHT/_ARHTEHT

^

IF: aHT + < e < 90 °eHT --

^

CLHT = CLa _HT+ (90° - _eHT)/(90° - _HT+)

^

CLHTsTAL L = CLa _HT+

CDHTsTAL L = CDOHT + C L /_ARHT EHTSTAL L HT

CDHT = CDHTsTAL L + (_eHT - aHT+) (].l - CDHTsTALL)

90 ° - aHT +
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HORIZONTAL TAIL LIFT AND DRAG (CONTINUED)

IF: 90 ° < eeH T --<(180 ° - .5 _HT_)
_J

= 5 - 90o)/(90 ° - .5 _HT )
CLHT " CLe eHT_ (eeHT

CLHTsTALL = .5 CLc , _HT_

2

= C L /_ARHTEHT +
CD HT ST ALL HT STALL CDOHT

CDHT = CDHTsTAL L _eHT . _ o i CDHTsTALL

(.5 eHT_ - 90° )

IF: (180 ° - .5 _HT_) _< ':_eH T _< 180 °

CL = CLe (ae - 180°)
HT HT

= /_ARHTEHTCDHT CDOHT + CLH T

IF: -90 -< < _HT
_eHT

CLHT = CL_ aHT- (-90° - _eHT)/(-90° - eHT_)

CLHTsTAL L = CLa aHT_

2

= CDOHT /_ARHT EHT
CDHTsTAL L + CLHTsTAL L

CDHT = CD + (_e -_HT )(i'i - CDHT )HTsTAL L HT - STALL

(-90° - eHT )
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.. HORIZONTAL TAIL LIFT AND DRAG (CONTINUED)

IF: (-180 ° + 5_ )< _e <-90°
•. " HT+ HT

• CLH T = .5 CLe _HT+ (_eHT + 90°)/(-90° + .5 eHT+)

!

;

CLHTsTALL = .5 CLe _HT+

C D = CDOHT + C_ /_ARHTEHTHTSTALL HTSTALL

^

- + 180 ° - 5 ) (i.i -
CDHT = CDHT STALL (_eHT " _HT+ CDHTsTAL L

(.5 _HT+ - 90°)

IF: -180° ! _eHT <(-180° + .5 aHT+)

CLHT = CL_ (_eHT + 180°)

2

CDH T = CDOHT + CLHT/_ARHTEHT
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VERTICAL TAIL AERODYNAMICS -_

VERTICAL TAIL ANGLE OF ATTACK AND SIDESLIP

6VT = Tan-I [ VVT/_U_T + W_T]
,e

_VT = -SVT + Bf (da/d_) {NOTE: THIS VALUE OF _VT IS USED
IN RESOLUTION OF FORCES

AND MOMENTS}

IF: IeVTI>I80°;_VT = eVT -(sign _VT) (360 °) {NOTE: THIS VALUE OF ""
art ONLY USED
IN CALCULATION

= (aVT+ _ ) OF FORCE AND
eVT _VT RUD MOMENT COEFFI-

CIENTS}

= - 2°_+_VT._VT+ (aVTSTAL L RUD

2°)+T
_VT_ = -(_VTSTAL L- VT 6RUD

Cy_ = CY_vT/VI-M2

TAIL DYNAMIC PRESSURE AND SIDEWASH

= 0/2 (U2 + v 2 + W 2)

=(da/dS) BF

VERTICAL TAIL LIFT AND DRAG

<

IF: _VT_ _ C_eVT eVT+

CYv T = Cy_ _ev T

CDv T = CDOvT + C_VT/_AR E_T VT
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._ VERTICAL TAIL LIFT AND DRAG (CONTINUED)

^

IF: _VT+ < _ < 90°
• eVT --

^ ^

CYv T = Cy_ _VT+ (90° - _eVT)/(90° - _VT[

i
^

Cy = Cy_ _VT+
VTSTAL L

2

= /zARvTEVT
CDVTsTAL L CDOvT + CYVTsTAL L

+ ( - eVT+ ) (i 1 )CDv T = CDVTsTAL L _ev T • - CDVTsTAL L

(90o - _VT+)

^

IF: 90° < _e _<(180 ° - .5 _VT )
VT

CYv T - 900)/(90 ° -.5 eVT_)= .5 Cye _VT (_eVT

^

Cy = .5 Cy_ _VT
VTsTAL L

2

= CDOvT + CYvT S /_ARvTEvTCYVTsTALL TALL

CDv T = CDVTsTALL + (aev T + .5 _VT_- 180 ° ) (i.i - CDVTsTALL)

(.5 _VT_ - 90°)

IF: (180 ° - .5 eVT_) "! aeVT < 180_

= Cy_ ( - 180 ° )
CYvT _eVT

O

CDv T = CDOvT + CYvT/_ANvTEvT
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VERTICAL TAIL LIFT AND DRAG (CONTINUED)

IF: -90 ° < _ <
_ e aVT-

VT

CYv T = Cy_ _VT_ (-90° - _eVT)/(-90° - _VT_^ ) i

Cy = Cya aVT

VTsTAL L - , !

CDVTsTALL = CDOvT + C2yVT STALL/nARvTEvT , i

^

CDv T = CD + - -) (i.i )VTSTAL L (aeVT aVT - CDVTsTAL L

(-90 ° - aVT -)

IF: (-180 ° + .5 _VT+) < _ev T < -90 °

i

CYv T = .5 Cye eVT+ (_eVT + 90° )/(-904 + "5 _VT+ )

^

CYvT = .5 Cy_ eVT+
STALL

= CDOvT + C 2 /nARvTEVT
CDVTsTAL L YVTsTAL L

= CD - + 180 ° - 5 ) (i.I - CD )
CDvT VTSTAL L (_eVT " _VT+ VTSTAL L

(.5 _VT+ - 90°)

IF: -180°! _ev T < (-180 ° + .5 aVT+)

CYvT = CYa (eeVT + 180°)

2

CDvT = CDOvT + CYvT/_ARvTEVT

E-48

|

Q

1977016150-177



J

g,,

D238-I0002-I

TAIL EQUATIONS LOGIC

HORIZONTAL TAIL

1. If hWc/4 > 100 feet; set GEF = 0.0

2. If the umbrellas open; set e = ep (i - GEF)

-M2

3. If _eHT > SHT+ print stall warning

4. If _ < _ print stall warning
eHT HT-

VERTICAL TAIL

i. If eev T > _VT+ print stall warning

. If eev T < _V_- print stall warning
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TAIL FORCE AND MOMENT RESOLUTION TO C.G.

I

HORIZONTAL TAIL - NOTE: - IF UMBRELLAS OPEN AND U>O; SET qHT

= .5 nHT

i
HT

XAERO = [-CDH T cos (_HT - iHT) cos (SvT - o) + CLH T sin

_ i
(_HT iHT) ] _ SHT nHT

yHTAERO = -CDHT sin (SVT- d) q S_T qHT

.T [_ZAER0 = CLH T cos (XHT - iHT) - CDH T cos (6VT- o) sin "

(_HT - iHT)] _ SHTqHT

HT HT

_AERO = -YAERO (ZHT - ZCG)

HT HT HI' _ ZCG)MAERO = ZAERo(XcG - XHT) + XAERO(ZHT

HT HT (XcG _ XHT)NAERO = -YAERO

VERTICAL TAIL

=[- _ - ,cosRO CDV T cos (_VT J)cos(_HT - iHT)-CyvTSin(2%'T

(_HT - iHT)]
SV T qVT

yVT = ICy v cos (S - _) -C sin ( - q)l q S n
AERO T VT DVT _VT VT VT

VT F - ' .- d'ZAERO = CDV T cos (3VT - d) sin (_HT ZHT) - Cyv T sin (_VT '

sin (_HT - iHT)] _ SVT nVT
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VERTICAL TAIL (CONTINUED)

_VT, = _yVT (Z - Z C )'_AERO AERO VT C

VT VT VT

MAERO = EAERO (Xc G XVT) + XZERO (ZvT - BCG)

VT VT

NAERO = -YAERO (XcG - XVT)

TOTAL TAIL CONTRIBUTION

T VT HT

XAERO = XAERO + X,ERO

• T VT HT

ZAERO = ZAERO + ZAERO

MAERO RO MAERO

yT VT HI'
AERO = YAERO + YAERO

T VT ,_HT
_r AERO ='_AERO +_-AERO

T £ + NHT
NAERO = NAERO AERO
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NACELLE AERODYNAMICS

NACELLE ANGLE OF ATTACK AND SIDESLIP

-i q V2
aRN = 'fan :WRR/URR , qRN = 1/2 _ RR

_LN = Tan i _ = 1/2 p V_R' qLN

_RN Tan-I[VRR / _ 2 _ ]- = ' v URR + WRR

_LN = Tan-I[VRL / /UqL + W_L ]

NACELLE WIND AXIS FORCE & MOMENT COEFFICIENTS

CDR N = CDO N + K30 aRNI+ K311_RN NOTE: CHECK RANGE OF
_RN & _aLN TO
DETERMINE VALUES

CDI.N = CDON + K30 _LN[ J" K31!_LN FOR CONSTANTS.

:'_L,_'_'._= K32 Sin .XXN cos aRN

CLL N = K32 Sin _T.N cos "_LN

CMR N = CMO N + Kg 4 Sin _RN cos _RN + K35 (sin 'R:I co'_ ,Rh)

sin aRN cos _RNI

CNL N = CM0 N + K34 sSn _LN cos tLN + K35 (sin _LN cos -_LN)

sin _LN cos _LN _
4

SPECIAL CONDITrO_,_S

I. IF: VRR kL(FT/S}C)2; RIGHT NACELLE AERO -- 0.0 &
HOLD XYALL'E OF C,RN & "RN

o

2. IF: V_R <_I(FT/SEC)_; LEFT NACELLE AERO - 0.0 &

HOLD VALUE O? _LN & :"LN
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CyR N = K36 Sin SRN Cos 6RN + K37(Sin gRN Cos £RN / Sin 3RN Cos 6RN

= K' Sin _ Cos S + K' (Sin S Cos $ ) Sin S Cos S
CyLN 36 _I.N LN 37 LN LN LN LN

CNRN CNORN + K38Sin SR::C°s SRN + K39 (Sin 6RNCOS_RN)ISIn,RN Cos _RN

+ K (Sin 3 _ 'Sins Cos
CNLN = CNOLN + K40Sin BLNC°S _LN 41 LN TM LN )I LN LN

RN = _LN = 0.0

NACELLE FORCES & MOMENTS - :_ACELLE AXES

' ' = [-CDRNCOSaRN + CLRNsin_RN RN :_RN_XRN qRNSw . - Cy sin._R,_COS ]1/2

AY_N = qRNSw[CyR N cOS3RN - CDRNSingRN]I/2

_I'_ZRN = qRNSw[-CIRNCOSaRN - CDRNCOS2RN sin_:KN - CyRN sin_ sin]I/2,_,, " . . _RN _RN"_ KN = qRNSwbw [ c___/q
bW CMRN sln_RN COSaRN - CNR N sin_RN]i/2

AMRN = qR_:S_c W [C cos 5 ]1/2MRN RN

' ' CW CM sin £ cos_RN]l/2-,NRN = qRNSwbw [CNR N cos :_RN - -- RN RN
bw

""_[_ = qLNSw [-_LN cos :LLN + CLL N sin '[.N CyL N sin {LN c°s_L_]i/2

,y'
- LN = qLNSw [CyL N cos ZLN - C[;LN sin _.LN]I/2

_ZLN = qLNS:._["CLLNC°S°_LN-CDLNC°S_LNsin*LN-CyLNsin_LNS±n_L. _]I/2

cW

_LN = qLNSwb%¢[ CHL N sin _LN cos "LN - CNL'_ sin -_LN]I/2
bw

AM{N = qLNSwCw[CHLNCOS :_LN]I/2

_N_N = qLNS_Tb W [CNL N cos _LN - c,_ C_ILN sin ':L>;c°s'LN]i/_
bw
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LANDING GEAR EQUATIONS

PERFO_.I THE FOLLOWING CALCULATIONS FOR EACH WHEEL OF THE
LANDING GEAR WHERE - n = 1 LEFT _IN GEAR

n = 2 RIGHT MAIN GEAR

n = 3 NOSE GEAR

I

LANDING GEAR - A/C LOCATION

Xn = _ XCG + XGn

Yn = YGn

Zn = - ZCG + ZGn

STRUT DEFLECTION

hG6 n = Xn sin e - Zn cos 9 - rn

hG_n = [Yn sin _ + (Zn + rn) (cos _- I)] cos

hTn = (-_DOWN + hG_n - hG' )/(cOs _ cos _)_;n

RATE OF STRUT DEFLECTION

hTn = -ZDOWN / (cos : cos _) + Xnq - Yn p

VERTICAL FORCE

FGZ n = KST n hTn + DST n hTn

NOTE: COHPUTE FGZ n ONLY IF hTn < 0;

IF hTn • 0; FGZ n = 0.0 &

REMAINING CALCULATIONS .MAY BE SET

TO ZERO.
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LONGITUDINAL FORCE:

F,,n = (_0 + _1 BCn) FGZn u/lu[

NOTE: BGn is per, ._nt brake pedal deflection.

SIDE FORCE:

J

= v./IvlFSn S FGZn

• FORCE AND MOMENT CC_qTRIBUTION OF EACH WHEEL

= F - FGZ 0 (n = l,V)-_Xn _n n -

_X3 _ 3 cos _STEER FS3 sin 6STEE R -GV 3 -

5y + _ (n = 1,2);
n = FSn FGZn

5Y3 = FS3 cos 5STEE R + Fu 3 sin _STEER + FGZ3

&Z n = F_n _ - FSn _ + FGZ n

_M = - _Z X + ,X (Z + r + hTn)n _ n n - n n 11

_ = _" y - _Y (Z + r + h )
'_"n _ '_n n n n n T n

-Nn = - 5Xn Yn + Xn _'n
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3

AXLG IZ £Xn 1

3

&YLG = Z AY n |
i

_ZLG = Z _Z n
i

I
3 '

f

3

!MLG = Z _Mn
1

3

&NLG = i AN n
., i

!

l
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FUSELAGE AERODYNAMICS

FUSELAGE INPUT EQUATIONS

EaF = Tan -I (W/U) _F : Tan-i V/_/U2 + W2

!

_9 = sin _F cos eF _F = Sin BF cos 8F ,J

= /u2 + v2 + w2
VF _

qF = i/2) V_

VFU S = VF

FUSELAGE WIND AXIS COEFFICIENTS

" CDF = CDO F (I + KOISFI s) + K2 _F + KII_F ]�ACDLG

" CLF = K 3 _ + K4 _I_FI :" K42

! ! !

CyF = K7 gF + K8 _F IBF!

CMF = CMOF + K5 _F' + K6 aF'IaF' + _CMLG'_

CNF = CNOF + K9 _F='+ KI0 3'IF3F'

NOTE: IF GEAR IS UP; £CDL G& £CML G E 0.0

SPECIAL CONDITIONS

I. IF V_ i ! (ft/sec) " FUSELAGE AERO = 0.0 &
HOLD VALUE OF _F & _F
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FUSELAGE FORCES AND MOMENT ABOUT A/C C.G.

F !

XAERO = [-CDF cos eF + CLF sin eF - CyF sin _F c°saF] qFSw

F'

YAERO = [CyF cos BF - CDF sin gF ] qF SW

F ! '

ZAERO = [-eLF cos aF - CDF cos BF sin a F

-C sin B sin _ ] qF SYF F F W

F'

2_AERO = [- (Cw/bw)CMF sin BF cos aF - CNF sin _F ] qF SW bw +

F'

YAERO [Zcg - ZFAC]

F' F'

MAERO = [CMF cos BF] qF SW Cw + ZAERO [XcG - XFAC]

F'

-XAERO [ZcG - ZFA C]

F'

NAER0 = [CNF cos a F - (Cw/b w) CMF sin _F sin (_F ] qF SW bw

F'

- YAERO [XcG - XFAC]

F F

XAERO = XAERO + _XLG

F F

YAERO = YAERO + 2YLG

F F

ZAERO = ZAERO + AZLG

_F FAER0 = _AERO + IZLG

F F'

MAER0 = MAERO + iMLG

F F'

NAER0 = NAERO + _NLG

E-58
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WING ON ROTOR INTERFERENCE

AVERAGE NACELLE INCIDENCE

lN = 0.5 (iNL + iNR)

AVERAGE LIFT COEFFICIENT i

(CLsRW + CLSLW)

CLW = 0.5
(i - t:TS)

LOOK-UP: _WRR & £WRL @ iN & CLW

WING INTERFERENCE LOGIC

1. IF: Umbrellas open, set CLW = 0.0 & _ = _p(I-GEF)

/I-M 2

E-59
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ROTOR/ROTOR INTERFERENCE

POSITIVE SIDESLIP, I.E., V > 0.0 (Logic Required) i

i

× = 1.5708 - _PRR _

V_R = 1 2 T 3× X

.
v* 27 _R 21 RR

, = -1 [ _VRL I• iRL -tan VLR + 1.0

= (16 I) (.40528 iNL) _' IiRL ' F iRL '

_iLR = 0.0 I

NEGATIVE SIDESLIP, I.E., V < 0.0
%

X = 1.5708 - <PLR

EV£R = + T k + T X X [
! I 2 3 J

1 LR ) _

VLR v*
RR 2p_R2

!

_iLR = -tan-I [ _vL-RLVRR+ 1.o !I,
-!

_iLR = (!_FI) (.40528 iNR) iLR .

_iRL = 0.0

NOTE: v, R & v,L FROM WING EQUATIONS.

E-60
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ROTOR EQUATIONS

RIGHT ROTOR

-i I_/VRR + (WRR + URR _WRR) 2 }

_RR = tan + _iLR

URR
I

VRR

VRR = V U 2 + V 2 + W 2 ; =RR RR RR { RtR

LEFT ROTOR

aLR = tan -1 V_L + (WRL + URL eWRL ) +

URL

VLR = L + V_{L + WRL ; ULR = VLR

I L{R

ROTOR ANGULAR RATE TRANSFO_'IS

RIGHT-NACELLE AXES LEFT-NACELLE AXES

pN = + r sin i pN = - r sin
NR -p cos iNR NR NL p cos iNL INL

N N
QNR = q + iNR QNL = q + INL

R = - r cos iNR - D sin iNR R_L = r cos iNL + p sin iNL

RIGHT WIND AXES LEFT WiND AXES

= pN pR = pNP R NR NL NL

QR = QN cos _ +R N sin _ QR = QN cos _ - RN sin
NR NR HR NR HR NL NL HL NL HL

R R = RN cos _ -O N sin RR = R N cos + QN sin
NR NR '}IR "NR HR NL NL HL "NL HL

NOTE: USE WIND AXIS RATES IN ROTOR ROUTI:_E.

i E-61
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RIGHT ROTOR "

THRUST

c
WHERE: CT ° = 0.000679 ¢ + 0.000015 ¢2

I

+ 0.0022 _ + 0.000211 _2#

and

¢ = e_ 5 tan_ 1 u cos a
- 0.75 - 6.3015u + 5.5816u _

- 8 _ sin _ + 1.115

GROUND EFFECT

hRR = -ZDowN + (LS Cos iNR - XCG) Sin e

[ + Z G) C°s ¢ - Y Sin _ ] C°s 0
+ (Ls Sin iNR C N

RR 2R[ Sin(0 + iNR)Cos 71 + .0174]

TOGEI EFF
RR

RR

+ (_) (1.4779 _RR - .4143)
EFF

RR
%

1.2479 - .8806 URR I
+

CTRR TRR _ToGEI
RR

SPECIAL CONDITIONS: IF URR g 0.283; I IGEI = 1.0

IT-_I RR

(_) 1.3,ITICEI = 1.0
or IF _ EFF " IT--_E,EI RR

RR

J

' E-62
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POWER

CPR R = CPOR R

= 0.00006 + 0.00057 'a + 0.000085 , 2 + 1.12 CT2/2 -

- 0.024075 CT + _C T (0.53 + 0.456 _ -39.937 uC T

+ 31.79 CT) + [0.0115_ - 0.03_ 2 - CT(3.4, _ -8,2)] (aRAD)

- 0.22064u (CT + 0.001971) sin

+ (0.3082_ - 2.18_ 2) CT sin
NORMAL FORCE

CNFRR CNFORR + dCNFRR AICR + dCNFRR BICR

dAl CR dBl CR

WHERE: CNF O = CNF 1 = 0.068u 3 sin 2_ + [0.133695uC T
f

+ 73.444_ CT2 (l-u)]K 0 <_ - _ 0.6

where K = sin a for _ > 20 °

and K = sin a(10-0.45a °) for 0 < u < 20

For 0.6 <

CNF = (CNF I) (I-0.8(_-0.6))

dCNFRR + _RR + +
dAic R = DNFI CTRR DNF2 DNF3 URR DNF4

+ DNF5 _RR sin 2 _RR

dCNFRR
+ + u +

dBIcR = ENF 1 CTRR ENF2 URR ENF3 RR ENF 4

+ ENF 5 _RR sin _RR

E-63
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SIDE FORCE _ ;

CSF C_F + dCSFRR 4. dCSFRR B1= AICR CR
RR ORR dAIc R dBIc R

WHERE: CSF O = 0.00430 '4s_n _ - 0.0028827 ,_ (_RAD)2
• d

+ 0.012 u sin _ CT (90-_ °) + 2.19_ 3 5:_ _ CT

I-u-ui cos _ q
where _&o = tan-I i

! _i sin _

and _i = I (u4 + CT2)I/2 - _ /2 _ I/_ i

dCsFRR ,

CTKR _RR + DS u + DSF 4dAIc R = DSF 1 + DSF2 F 3 RR

+ DSF - URR sin eRR
2

dCsF

RK = ESF 1 C + E '_ + E S p + EdB ICR TRR SF 2 RK F3 RR SF 4

+ DSF 5 _RR _in 2 eRR

E-64

\

1977016150-193



i !
I

D238-I0002-I

HUB PITCHING MOMENT
?

dCpMRR dCPMRR dCPM_R R

CpMRR = + AICR + BICR + QNR "
CpMoRR dAIc R dBIc R dQ

WHERE :

i.

CpM O = 0.0099_=0 _ sin _ -0.010960u 2 sin

RPM
+ 0.0028126 u sin 2a - 0.0057743 p sin i

298
L_

+ (1.802 '_ sin _ - 7.56 (_ sina) 2 CT

i000 dCpM = 1.5 + _ 0 < p < .2
w

dQ

= 0.25 + 7.26 _ ,2 <u < ,39

= 4.1681 -2.79 . u > .39

dCPMRR

= DpM I CTRR _ DPM 2 _RR + DP)t 3 _RR + DPM,
dAIc R

+ DpM 5 LRR sin 2 eRR + DpM 6 URR (!£Rt-:_o)

* E-65
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I HUB PITCHING MOMENT (CONTINUED)

_ d CpMRR = EpM I CTR R + E 2 + E _ + E
; d BIC R PM 2 URR PM 3 PM 4 :

+ EpM 5 _RR s_n aRR + EpM 6 _RR ([_RI -_o )

k

HUB YAWING MOMENT

i CyMRR = CyMoR R + dCyMRR dCyMRR dCyMRR RdAIc R AICR + BIC R + RNR

dBIc R dR I

Where :

For 0 < U < 0.37

CyM = (0.018369 _ -0.0007)_sin_ -1.2 _2 CT sin _ I

+ .00631-0.002604u-0.004877 _,2_ k29----8 ,
and for u > 0.37

CyM = (0.01916 - 0.15321 (_ -0.5435) 2) sin _ _,

- 1.2 u2 CT sin

dCyM = _ dCpM I

dR dQ I ;

E-66
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HUB YAWING MOMENT (CONTINUED)

• °

dCYMRR = D C + D 2 + + D _ _,

_ dAIC R yM I TRR YM 2 _RR DyM 3 ]JRR YM 4 _

+ DyM 5 BR R sin _RR + _M 6 _RR(I_RI -_o ) :'

dCyMRR

- EyM I CTRR + EyM 2 _2 R + EyM 3 URR + EyM 4: dBIc R i ._

+ EyM 5 '_RR sin 2_RR + EyM 6 _RR (I_RI - _o)
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ROTOR FORCE & MOMENT CALCULATION m.

CTR R
TR = fTR p_R4_ t

t *
NFR = fNF R CNFRR P_R4_2R _

_ 7
I

_, SF R = fSF R CSFRR P_R4_

MR = fPMR CpMR R p_RS_ M

N R = fyM R CyMRR _R5_ -_ "

m_

QRREQ = fQR CpRR p_RS_R "" * '

_ mJ _

' °" ! -- "• 5-gg-
• i 4_

LEFT ROTOR FOLLOWS SIMILAR FORMAT WITH SUBSCRIPTS CHANGED.

THE LEFT ROTOR ALTITUDE EQUATION IS AS FOLLOWS:

. hLR =-ZDowN + (Ls cos iNL - XCG) sin 8 ""

!, + [(LS sin iNL + ZCG) cos _ + YN sin %] cos 8 I." ::

' or; " "

hLR = hRR + 2 YN sin 0 cos 8

J

%
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I ° ,:'_ ROTOR FORCE & MOMENT RESOLUTION
L.

: HUB MOMENTS - NACELLE AXES i

LEFT ;i •

I

u. _L = - _n - Ip _L K _ "RH LREQ "_ :
I

' M = M L cos - N L sin _ iLRH _HL _HL

f-
t

_ 1 - (p sin iNL + r cos iNL)( KIpa L + NEL K I .IE nEL ) ._

NLR H = -N L cos _HL - ML sin _HL + (KIp_L + NEL KIIEaE L) (q+iNL)
I

RIGHT
I

_RH = QRREQ + Ip [2R K "i

; MRR H = M R cos _HR + NR sin _HR _! "

: _ } + (p sin iNR + r cos iNR)(KIpn R - NER KIIEnER ) !

NRR H = N R cos _HR - MR sin _HR - (KIp_R - NERKIIEaER)(q + iNR) _

_- NOTE: NACELLE AXES ARE RIGHT HANDED SYSTEMS "

i K1 = 0 if non-tilting engines .

= 1 if tilting engines c

i
i E-69
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I!
RESOLUTION OF ROTOR/NACELLE FORCES TO BODY AXES AT PIVOTS

_ LEFT ROTOR I
NL ,

XAERO (TL + &XLN )COS iNL- sin iNL(NF L SF L sin _HL

= cos _HL + I
!

- &ZLN )

I
yNLAERO = SF L cos _HL - NFL sin _HL + AYLN

I
ZNL' = -(T L + _XLN) sin iNL - cos iNL (NF L cos _HL + SFL

- AERO _ Isin _HL - &ZLN)

; .f,NL' ' ' NL

_AERO = _LRH + A_N) cos iNL + sin iNL (NLR H + &NLN + LsYAER0 ) 1 "

:,°- MAERONL = MLR H + AMeN + NF L Ls cos" _HL + SFL Ls sin _HL I
4 r

- Ls AZLN - IE fiEL r NEL K2

NL ' + L NL
NAERO = COS iNe (NLR H + ANL__ s YAER0 ) - sill iNL(_R H + &_N ) -" i

tw _
i'

+ IE _EL q NEL K2 _ !-o

/' }

NACELLE EQUATION INPUT - LEFT -_

NL + I r K2 ,: MNLAERO = MAERO E fiEL NEL _ _

_° ;

:_ GLAS INPUTS - LEFT "'"

MNLAER0 = MLR H + Ls (NF L cos _HL + SFL sin _HL) --

_ GLAS K2 = 0 if tilting ..

NNLAERO = NLR H + L (SF L cos _ - NF L sin ) enginess HL _HL ....
GLAS = 1 if non-

tilting engines ""

: E-70

•

" k

1977016150-199



f" !

D238-I0002-I .-"

4

[ RIGHT ROTOR o

i XNR = (TR + AX' ) cos i + sin i (-NF cos[._ AERO RN NR NR ]_ HR

! + SF R sin _HR + _ZRN)

t yNR = -SFRcOS _ - NF sin _ + AY' ._
AER0 HR R HR RN

zNR ' (TR ' (_NF R '= - + AX' ) sin i + cos cos _HRAERO RN NR 1NR

_ + SF R sin _HR + AZRN)

.NR'
= + ) cos i + sin i + L +

• ERO RH N NR NR (NRRH s AERO ,,

: _ NR ,
_ MAERO = MRR H + &MRN + NF R Ls cos _HR - SF R Ls sin _HR

L

!

= _ " - Ls AZRN IE _ER r NER K2

NR
NAERO = cos iNR (NRR H + ANRN + L s yNRRo) -sin iNR(_RRH + _RN )

+ IE _ER q NER K2

NACELLE EQUATION INPUT - RIGHT

= MNR + I _ r K
MNRAERO AERO E ER NER 2

. GLAS INPUTS - RIGHT

i MNRAERO = MRRH + Ls (NFR cos _HR - SFR sin _HR )
! .

GLAS

= - L (SF R cos _ + NF sin• NNRAERO NRR_ s HR HR )
GLAS

E-71
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WING VERTICAL BENDING
?

• 7

-- ZAERO + Y

,: aRT = m N p I

7 _ = ZAER 0 + Y P i

RWAC m WAC I

• h = K ZNR' + K ZRW' + K NR' - K a - K a i
1R W 1 AERO W 2 AERO W3ZAERO W 4 RT W 5 RWAC

_ hlR = AhlR/At!. |

: Where AhlR is the difference of hlR between time frames and ]

At is the time frame. I

RIGHT WING A.C. DEFLECTION

:" ! Rt ' I!

NR W NR -- --

'i hlRwAC = KW 6 ZAERO + Kw 7 ZAERO + KW 8 _AER0 - KW 9 aRT - KWI0 a RWAC

h = Ah I /At
" IRWAC _RWAC

' Where: AhlRwA C is the difference of hlRwA C between time frames

_. and At is the time frame. 1
;' FORCE AND MOMENT EFFECTS

"_' "'NR _2_W 1 :NR _ 2 NR + _i ZNR' _ _
] ZAERO = _WI _AERO _WI ZAERO AERO

:. RW -2_ _ - +
AERO W2 W2 AERO W2 AERO _W2 AERO

+"" R = -2_ _
ERO W3 W3 ERO W3 AERO W3 _AERO ..

't

E-72
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L LEFT WING DEFLECTION _ "

L _ _ "-, ZAERO _ y P _aLT m N

'1
-- ZAERO " ..

L I aLWAC - m YWAC p '_

_NL' '_LW' 2aNL' -- --

hl L KW 1 ZAERO + ZAERO aL T aLWAC= KW 2 - KW 3 _'-AERO - KW 4 - KW 5 _

(_
hlL AhlL/At _ ,

I Where: AhlL is the difference of hlL between time frames and i
I_. At is the time frame. ._ ,_

i LEFT WING A.C. DEFLECTION _

(_ _NL' _LW' 2oNL' aL --
hlLwA C = KW 6 ZAERO + KW 7 ZAERO - Kw 8_AERO - KW 9 T - KwI0aLWAC !i

i i
hlL = AhiLwAc/At t_ 't

'-" Where: &hlLwA C is the difference of h ILWAC between time frames

; and At is the time frame, t

FORCE AND MOMENT EFFECTS

i "'NL -2 (°Wl zNL _ _2 zNL + _2 ZNL'_-" ZAERO = _WI AERO WI AERO WI AERO

!

I "'LW r _LW tW o _LW'
" ZAERO = -2_W2 _W2 AERO - _2 ZAERO + _W2 ZAERO

{ ..NL _ _NL _ _2 NL m2 _L'-" IAERO = -2_W3 W3W_-AERO W3_ERO + W3 ERO $

FORM Z NL ZLW and _NL
AERO' AER0' _AER0

E-73
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D238-I0002-I IWING TORSION

LEFT WING TWIST AT TIP I

Kst 8tLW = MNLACT - IE _EL r

CW W

+ qSLW 2 CMO (1 - CTSLR)

+ (i- CTSLR)qSLW C_ (dCMWc/4 + XWAC_(_L_b_ 1 1

dC L Cw/\ 6n / !

(4OtLW + 3H_LWRIGID) _°

RIGHT WING TWIST AT TIP
#

mm

Kot 0tRW = MNRACT - IE _ER r

2 :
cwb w }'

+ qSRW _ CM0 (i - CTSRR) --
2 :'

( o)4etR W + 3_aRWRIGI
'1

WHERE: CMO = Cl + C2 6F + C3 _F --

YWACG - e
tLWAC YN tLW

YWACe - e ,_
tRWAC tRW ., ,

YN _

NOTE: If umbrellas are open; set terms containing t

I.
qs (1 - CTS) equal to zero,

o, I. 1

1

i
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TOTAL FORCE AND MOMENT SUM24ATION ABOUT C.G. _

L '?= xNL + xNR + XF + ,'LW + xRW + XT
XAERO AERO AERO AERO AERO AERO AERO

= yNL + yNR + yF + yLW + yRW + yT '_
: YAERO AERO AERO AERO AERO AER0 AERO l

NL NR F LW RW T
ZAERO = ZAERO + ZAERO + ZAERO + ZAERO + ZAERO + Z_ERO

=_AERO +XAERO +)_FERo + AERO ,_

NR NL NL NR _ '

+ YN (ZAER0 - ZAER0) + ZCG (YAERO + YAER0 ) _ :

NL NR F W T
1 MAERO = MAERO + MAERO + M ERO + MAERO + MAERO i :

NL NR - NL NR
_ + XcG(ZAERp + ZAERO) - ZCG (XAERO + XAERO) _

NL NR F W T
_ NAERO = NAERO + NAER0 + NAERO + NAERO + NAERO

NL NR NL NR _
+ YN (XAERC - XAERO) - XCG (YAERO + YAERO )

r
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BASIC EQUATIONS OF MOTION

PRELIMINARY CALCULAT IONS I

__FUSE_ , _ W oR.T. A/C C.G. _, ,,

Xf _" _ CG I
Zf = hf - ZCG

1
WING C.G. W.R.T. A/C C.G.

I
= £ - XCGXW w

Zw = hw - ZCG I

NACELLE C.G.'s W.R.T. A/C C.G. I

XR = £ cos (iNR - I) -X CG i

ZR = -£ sin (iNR - _)-ZcG I

XL = £ cos (iNL - ,_) -XcG

ZL = -% sin (iNl - I) -ZcG

I

I

i
7

,p.

E-76 .,
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l- PRELIMINARY CALCULATIONS

q _ I(k) I(f) + I(W) + 2I'k ij = iJ lj ij

I _ i(k) + (i_z i_x) (sin 2 iN R + sin 2 iNL)
[_ Ixx = k xx -

- ' (sin 2 + sin 2 ) + 2 2Ixz iNR iNL mN YN

+ mf hf Zf + mw h w Zw

_}. - _.mN[Z R sin (iNR - X) + ZL sin (iNL - )_)]

Jxx = Izz - lyy

Ixz = I(zf) + I(zw) + 1/2 (I_x - I_z)(sin 2 iNR + sin 2 iNL)

I + I' (cos 2 ' + cos 2 ' )+(mf Zf Zf + m [ Z )
4 i xz INR INL w w w

+ mN£ [L'R cos (iNR - X) + ZL cos (iNL - X)]i
1

[: '{> ,

: i _ '
b_

: E-77
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/

INERTIA TERMS

Iyy _ _(k) + m_ (Z Xf + hf Zf) + m (_w Xw + hw Zw) I "
= Iyy f w

k i_

+ mN _ [X_ cos (iNR - _) - ZR sin (iNR \)] _"

+ mN £ IX L cos (iNL - _) - ZL sin (iNL - _)]
i

[

Jyy = Ixx - Izz ,

N

E-78
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L _
INERTIA TERMS ,_

L -_
Izz =_" I(k)zz + (I'xx - I'zz ) (sin2 INR" + sin2 iNL) _

L k _,2 :'i
+ I' (sin 2 INR + sin 2 iNL) + 2 m N YN ::{ ,

XZ _

L _
, + mf £f Xf + m W £W XW

-!

L '+ m N £ [X R cos (iNR - I) + X L coo (iNL - I)]

L _Jzz = Iyy Ixx

(
t L

i [.

f i ,
_ L
I

i -

_ u
_ :-

' E-79
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KOLL EQUATION D238-I0002-I i

• II p =-J rq + I (r + pq)xx xx xz

YN -_1 - i cos (i -X)+ £mN NR cos (iNR NL NL

PITCH EQUATION

2 2 I ;
Iyy q =-Jyypr - Ixz (p - r )

- iNK I'yy + £mN[-Z R sin (iNR -_. + XR cos (iNR -_)] 1

.o

- XNL" I'yy + £mN[-Z L sin (iNL -I) + XL cos (iNL -X)] I _ ':

}

+ MAER0 ._

i

YAW EQUATION I i ,
Izz r = -Jzz Pq - (rq - p) Ixz

.... 1
- _mN YN INR sin (iNR -l) - iNL sin (iNL -X -_ -

+ NAERO ..

t_

,/
_e

E-80
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!li . [ '= _ + £2
MNRAC T INR lyy m N (i-) I

raN • t

L - _2m N (i - _--) - pr cos 2 (iNR -X) + q i

, ]i _ + (r 2 _ p2) sin (iNR-I) cos (iNR-I) i

- (r2 _ p2) I' sin " cos " - I' q, zz INR INR yy

! + £ __ran XAER0 sin (iNR - %) + ZAERO cos (iNR - Xm

. i __ { .
i: - £m_q YN (r - pq) sin (iNR -x)

L [ I}i • - (p + rq) cos (iNR - X
i ,

i __, + MNRAER0

i t. LEFT NACELLE PITCHING MOMENT EQUATION OBTAINED BY CHANGING

l SIGN OF YN AND CHANGING SUBSCRIPT FROM R TO L.
{

[

| NOTE: THE ABOVE EQUATION MUST BE CALCULATED FOR WING TORSION

L
CALCULATION ONLY.

! [ t

!

f

1
I' E-81
J
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MOTION OF A.C. MASS CENTER

U = XAERO - g sin 8 - qW + rV I
m

V = YAERO g cos 0 sin _ - rU + pW I !m _ i
;i J

. ZAERO _

W - m + g cos 8 cos _ + qU - pV I ]'

_0__o_c=o_io_ i!
- _
'_ = (r cos _ + q sin _)/cos 8

• l:i
e = q cos _ - r sin _ _

_ = p + _ sin 8 i

h

1

I
!

]

]
-4b
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L GROUND TRACK

E NORTHWARD VELOCITY
• _

_":_L XNORTH = U cos e cos 4 + V (sin _ sin e cos 4

i - cos , sin 4), [_i
+ W (cos 4_ sin 8 cos qJ + sin _ sin 4)

.{

! EASTWARD VELOCITY

i _ YEAST = U cos 8 sin 4 + V (sin * sin 8 sin 4 + cos _

} * cos 4) "_i _ }
+ W (cos 0 sin e sin _ - sin _ cos _) "'_

_ .. '_"

DOWNWARD VELOCITY

U sin 8 + V sin _ cos 8 + W cos _ cos 0
i ZDOWN= -

t, i ,

_ j

<

[!
"2

!. _
i

t.
E-83 ' i

L
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c.oo I

XAERO + (q + pr) (ZpA )aXPA- m - ZCG :

+ (q2 + r2) (XcG - £PA ) + YPA (pq - r)
_:

- 2 q ZCG - XCG "_

aypA = YAEROm + (p - qr) (ZcG - ZpA) + (r + pq)(£PA - XCG) I i_

- YPA (r2 + p2) + 2 (PZcG - rXcG)

azp A = ZAERO + (q - pr) (XcG - £pA ) + (p2 + q2, (ZcG _ ZpA)

m J i
+ YPA (p + qr) + 2qXcG - ZCG

!
PILOT STATION VELOCITIES (BODY AXES)

UpA = Up + qZpA - rYpA

VpA = Vp + r£pA - pZpA

WpA = Wp + PYPA - qZPA ]

GUST MODEL I

The gust model will be that represented by NASA-AMES program
NAPS-80. The output of this program, in the form of gust velo-

will be added to the ]city components. Ug, Vg, Wg, p@, qg, rg
aircraft veloclty components In clear air as follows:

U = U' + Ug p = p' + pg

V = V' + Vg q = q' + qg
I

W = W' + Wg r = r' + rg

E-84 ..
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g = 32. 174

! ! l ! ! ! ! | !

I" m = [wf+WNT+WHT+WvT+Ww+WNF+WcR+wFUEL+WC ]/g

L
' /2gmN = WNT

'L ' + ' + ' + ' ]/g
mf = [w_ + WHT wVT WCK w C}

i ' + ' +w_'_F]/g !

[ _ mw = [wW WFUEL

[_ Zf' = [ (FS)p - (FS)f,]/12

- )HTCG ]" i_ £' = [(FS)p (FS /12NT

£' = [ (FS) - (FS) ]/12VT P VTCG

i £' -- [(FS) - (FS) ]/12PA P PA
! [.

_ £' = [(FS) - (FS) ]/12

• L _' = [W_£'+W' £' +W' £' + W' £PA +w'£']/(m'_)C- '_f f HT HT VT VT CR C f *_,

t
' , £W' = [ (FS)p - (FS)w]/12 .._'_

£FUEL [ (FS)p (FS)FUEL]/12 i_

_' = [ (FS)p (FS) NF]/12 ,_

-- = [w' _' + w' _' + w' _I,F]' /(_,g) ,,ZW W W FUEL FUEL NF 'i

4 i

i t
Q.m

Y _t

i;

[
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'[ ,,

l :
zf' = [(WL)F - (_'m)f,lll2 : ,

:r

z' -- [(WL) - (WL) 1112 '_'
HT P HTCG

I'
z' = [(WL) - (WL) I112

VT P VTCG

ZpA = [(WL)p - (WL)pA ]/12 I

Z'c = [(WL)p - (WL) C ]I12 I

hf = 1/(32 174 mf) [w' ' +w ' ' +w' ' Z ' 'fzf HTZHT VT _T + w + ]• CR PA Wc ZC

l! __

zW = [ (WL)p (WL)wIlI2

z' = [(WL) - (WL) I112 1FUEL P FUEL
f

m

z' = [ (WL)p (WL)NF]/12
NF .

= 1/(32.174 mw)[w'z' + w' z' + w' z' ]hw W W FUEL FUEL NF NF

f "

XWA C = [(FS)p - (FS)wAC]/12 -_

YWAC = [(BL)wAC]/12

Z = [(WL) - (WL) ] /12

WAC P WAC

Y = [(BL) 1112
N N

E-86
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i

1

J

, XHT = [ (FS)p - (FS)HT] 1/12

: ZHT = [ (WL)p - (WL) HT] 1/12

&_

XVT = [ (FS)p - (FS)vT] 1/12

ZVT = [ (WL)p- (WL)vT] 1/12

A = 3.14159 R 2

YWAC = [ (BL)wAC] 1/12

XG2 = XGI = [ (FS)p - (FS)G2 ] 1/12

ZG2 = ZGI = [(WL)p - (WL)G2 ] 1/12

YG2 = [ (BL)G2 ] 1/12

YGI = -YG2

YG3 = 0

YPA = [ (BL)pA] 1/12; POSITIVE FOR PILOT IN RIGHT SEAT

XfA C = [ (FS)p .- (FS)fAC] 1/12

ZfA C = [(WL) p - (WL) fAC] 1/12

E-87
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Xc/2 = [(FS)p - (FS)c/21/12 I i '"
ZG3 = [(WL)p - (WL)G3]II2 i

XG3 = [(FS)p - (FS)G31/12 ] i

YNF = [(BL)NFCG]/12

YHT = [(BL)HTCG]/12 I 1

YW = [(BL)wc G ]/12

YFUEL = [(BL)FuELCG]/12 l

INERTIA CALCULATIONS I

q_' = _f- £f

1:
_, = h_- z_

' =£ ' InHT f- £HT

_' = hf- ' ]HT ZHT

' ln_T = _f- £VT

, !6_T = hf- zVT

!

nCR = £f- _PA

!
6CR = hf- ZpA

I

.I

E-88
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_. n' -- £ - &' _.

c f c _ ,

_' = hf - z'
(

i C C -: .:,
t o

¢

: I(f) = I(Wf') + I(HT) + I (VT) + I (CR) + I (C) + W'f/g :: yy yyo yyo yyo yyo yyo

[.:

,2 + (S,2) + W_ /g (n '2 + (S '2 ) 4- W t /g (n '2 + (S ,2 ),i (n f, f' T HT HT VT VT VT

+ WCR/g (q6_ + 8'2CR) + W'/gc (n'2c + _,2)(.,

i(f) = i(wf,) + I(HT) + I(VT) + i(CR) + i(C) + , 6_x xxo xxo _o _o _xo w_./g_,2

,2 + y2 ) +

+ W_/g _,2c

Izz(f) = I(_zzo') + I(HT)+zzo I(VT)+zzo I(CR)zzo + I(C)zzo + W_/g n_

+ W_T/g (q,2HT + YHT ) + W'VT/g n'2vT + WCR/g ncR,2 + W'c /g n'zc

!

(f) (Wf,) (HT) (VT) (CR) (C)

= I + I + I + I + I + W_/g n_. 6_,Ixz XZO XZO XZO XZO XZO

6 '' _' + W /g ' ' + W R/g nCR CR+ W T/g nHT HT T nVT

_/g ' 6'+ IV nc c

H' = _ £'
WtW W W

.. A' = h - z'
WtW W W

H' = £ - £'
w'FUEL w FUEL

_' = h - z'
w 'FUEL w FUEL

E-89
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l

w' NF w i

' I, = h - ZNF

r,w,_ w _,,,,lii'_ + w'w/_ tI't_,2",,+ ,,_z,_,_ t
(w,FUI_L) �_yo.,2 ) .7

_(w) = _(w'w) + _yyo ,z + "w'NF l-YY yyo w' NF/g (_w' N_'

+ w,FUEL/g (Bw' FllEL i,2 + "/2w)
(w'_) + w'w/q (_w'W _ !

(w'F_L) + 1.xxo ..

IX % XXo --

+ w,_z_lq t_ _'_u_L �_ZL)+ w'_l_ t_w'_ ,

+
'w) + Izzo

_(w) = _(zWo ,2 + Y_F ) "_"
Izz ..

,z + 'Z_UZL) + w'_Ig t_w'_
+ W'FD_LIg (PIw'YUEL !'

I _WlW ""
(W'__) + wiw/q _4w'W

(w' _Ul_L) + _xzo
_(w) (w'w) + _xzo

= lxzo Hw, _w'NF
ixz + W'Ny/g NF ""

+ w'FUEL/g _Iw'YUEL _w'FUEL

E-90
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i- APPENDIX F

, This appendix contains the numerical constants and functions

i_ required by the equations presented in the preceding pages.
The data is listed by reference to the page number in Appendix
E where the numeri_l constant or function first appears.

I

l
°

. .

r

• °

Q°

-- F-I
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INPUT DATA

PAGE NO. QUANTITY VALUE UNITS _

E-7 20.6 degrees/inch
K_STEE R

K6RUD -8.0 degrees/inc J

K6r 1.0 -- I
i J

_A 20.0 rad/sec

1.0 -- L

K_s 1.0 -- I

_L 35.5 rad/sec

_' 0.18 --

i0 --

K6B " i

K6' 0.0 --

K_ -3.33 deg/inch
e

Schedule A to be determined _ ,
;' S l,
II C II

II D II

" E " -- :

II F II

II H II

" I " ._
" d "

E-8 Schedule A to be determined "_
l, S l,
II C II

II D II _w

E-9 Gains and _chedules
to be determined ""

F-2
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PAGE NO. QUANTITY VALUE UNITS .

E-9 Gains and Schedules

_ to be determined

L E-13 Engine Data See pageA-17 ....

{ WDTIND 0.0 --
I

L SHP* 4120.0 HP

L WMAX/W* 1.0 -- , [

NIIND 0.0 --

L NIMAx/N _ 1.0 --

i NI8 IND i. 0 --

(NI//_I/N_) MAX i. 115 --

QIND 1.0 --

QMAX/Q* 1.0 --

E-15 NIIMAx/N_I 1.214 -- :

i N*I 27932 RPM

-- E-16 (NII/NIIMAx) .7547 -- ,REF "

_ _REF 27.436 rad/sec

G 1 2.5 deg/sec/rad/sec

i G 2 2.66 deg/rad/sec ,

0.05 deg/sec/deg

_ I 150378.0 slug-ft 2
- P |

I _.. _ -i.0 --

I ' _tr 1.0 --

I i-

! :

! ""
t " F-3

:t
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PAGE NO. QUANTITY VALUE UNITS i _ ,

Schedule A See pages A-19 to A-22

" B - _ i _fl C II

" D "

" E " i" F " _ !

" H "

E-17 _p -12.0 degrees ]

mf 1397.5 slugs l

£f 0.091288 ft

mw 560.82 slugs I i

9w -0.83235 ft

m 2323.27 slugs

£ 7.4 ft I

mN 182.48 slugs

0.0 deg

E-18 hf 7.0896 ft

h 0.10271 ft i
W

E-19 ZWA C 0.54 ft

YWAC 17.51 ft

XWA c 1.4167 ft

YN 36.55 ft

Ls 8.5 ft I

E-20 iW 2.0 degrees ,

F-4
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i PAGE NO. QUANTITY VALUE UNITS

E-22 ZHT -15 583 ft _
f • _

j _

XHT -49.33 ft

i ZVT -5.25 ft _ ,

XVT -40.4167 ft _

I ,

_ 4

_ E-23 Solutions of See Page A-23

I Quartic

! A 2485.0 ft _

__ E-24 eWR R See page A-24 rad

e A-24 rad
WLR

-- PC 4.0 ft

i _: hp 0 .54 ft

i D 56.25 ft

! __ FiN 75.0 deg t

i

E-25 cw 10.23 ft

Sw 747.5 ft 2

i. CL_ W 4.1832 rad -I

_ E'-28 a7 0.0269 deg -I

• 62 22.22906 deg

.. a 8 -2.437137 ---

-I
a9 0.20607 deg -

[ "" al0 -0.003128 deg -2

63 29.786 deg

, all 0.442188 ---

I F-5
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I

PAGE NO. QU_TITY VALUE UNITS _ "_

a12 0.0263 deg -I

el3 -0.000338 deg -2 ] i

a29 0.000011 deg -I I!

a30 0.00003 deg -2 _ _'

65 30.0 deg 1

a31 -0.03105 ---

a32 0.001946 deg -I I

II
6_pl 30.0 deg

el5 0 066537 --- 1 i•

a16 -0.016342 deg -I I !
a17 0.00014 deg -2 ._

bo -0.000088247 deg -I I

b I 0.000008596 deg -2

F1 1.003412 ---

F2 0.011163 deg -I '

F3 0.002168 deg -2

64 20.1665 deg _

F4 -0.756323 ---

F 5 0.185684 deg -I I_ I

F 6 -0.002159 deg -2 :

ao 14.0 deg I

aI -0.07 --- [

_i 30.0 deg _ ?

[

F-6
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[ pAGENo QUANTITY VA_E UNITS
a2 11.9 deg

L a3 -15.0 deg

)
I a4 -0.06 ---?

I a5 -16.8 deg

'L[ a6 0.0888 ---

C' 0.073 deg -IL_ w!
i L a23 -2.051491 ---

I ! a24 0.215913 deg -I

/ _- a25 -0. 005276 deg -2

I CDO w 0.0152 ---

a26 0.0036 ---
F

! 0 054313
i {" a27 " ---

! a28 0 0269

i i
• ' E-30 a18 11.32 deg

• _ a20 -1.910958 ---
)

! "'" a21 0.211969 deg -I

i a22 -0.005391 deg -2J

i E-31 a19 10.92 deg

i i _-33 b_ -0.035178 ---
b3 -0.000244 deg -I

i_. b4 0.0 ---

_. b 5 -0.010154 deg -I

-- b 6 0.000081 deg -2

I

• i. F-7
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PAGE NO. QUANTITY VALUE UNITS I

E-33 CLMAX i. 2J35 --- _ :

(ag/a) w See page A-25 --- I i_ :

E-37 K20 -0.0908 red -I I i _

bw 73.1 ft

K_ l.o --- |
_AC 17.51 ft

K22 0.02 rad -I I _
!

K N i. 0 ---

E-38 fe 220.0 ft 2 :

u 1Xe/2 -i.1408 ft !

KD-!T o. o --- I
KD2 0.0 ---

T

KD3 0.05 --- IT

K M1 0.0 ---

KM2 0.0 --- 'I
T

KM3 0.0 --- I

T

E-39 KD4 0.05 .... 1 :

KM4 0.0 --- I

T

I
I
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i E-42 E See page A-26 deg_I o

i L de/de See page A-26 deg/deg _
.

L IHT 0 deg

_ E-43 THT 0.52 ....

I UHTsTAL L 17.15 deg

_ CL_H T 0.0694 deg-i

i (ag/a)HT See page A-25 ---

_. CDOHT 0.00734 ---
-&

0.8 ---EHT

" E-46 do/d8 -0.557 ....
r

! TVT
_" 0.46 ---

i _VTsTAL L 26.9 deg

I.. CYavT 0.0613 deg -1

7 EVT 0.88 ---

_ CDOvT 0.00615 ---

; ARvT 1. 536

i E-50 nH T 1.0 ---
_HT 0.0 deg

L SHT 227.5 ft 2

nVT 1.0 ---

Ii SVT 278.0 ft _

.
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PAGE NO. QUANTITY VALUE UNITS 1

E-52 for eN_ .5236 rad

CDO _ 0.00268 --- J _|

K30 -0.001908 --- l IK31 0.061849 ---

for _N>.5236 rad l

CDO N -.102244 ....

" K30 0.271593 --- I

K31 -0.077763 ---

K32 0.0546 --- I

CMO N 0.0 --- I

K34 0.02532 ---

K35 -0.00206 --- l

I

E-53 K36 -0.0546 --- I

K37 0.0 ---

K36' -0.0546 --- _I !

K_7 oo --- !
JCNoRN 0.o --- .

K38 -0.001206 --- I "
J

K39 0.0 ---

CNOLN 0.0 --- I

K40 0.001206 ---
|

K41 0.0 --- ,I

l
I

F-10

(

&
lb.*
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' i. PAGE NO. QUANTITY VALUE UNITS

! i E-54 XGI -7.41 ftj

l XG2 -7.41 ft

i XG3 33.33 ft

YGI -7.33 ft j

,I YG2 7 .33 ft

YG3 0.0 ft

i ZGI 13.5 ft

ZG2 13.5 ft

L 14.0 ft
ZG3

i r I 1.375 ft

r 2 1.375 ft

i r 3 1.0 ft

KST 1 20000 ib/ft

, . KST 2 20000 ib/ft

, KST 3 20000 ib/ft

" DST 1 1200 Ib/ft/sec

: dST 2 1200 ib/ft/sec

DST 3 1200 ib/ft/sec

E-55 _ 0.03 ---
;. o

u 0.005 ---
_" 1

_ _ 0.5 ---

I
_o

_o

' I F-11
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PAGE NO. QUANTITY VALUE UNITS i

E-57 CDOF 0.01288 ---

Ko 65.14 rad

K2 0.4 rad-2 I

K1 -0.00553 rad -I

ACDL G 0.0401 --- I '

K 3 1.26 rad -I

K4 0.0 rad -2 I

K42 0.0261 --- I
K 7 -0.361 rad -I

K8 -0.0987 rad-2 I

CM0 F -0.00455 --- ,

K 5 1.432 rad -I I

K6 -0.494 rad -2

I
_CML G -0.0568 ---

" CNO F 0.0 --- I

K9 -0.0051 rad -I

KI0 0.0 rad-2 I

E-58 ZFA C 5.75 ft !

XFA C 1.4167 ft

[
E-60 T1 0.2434 rad -I ,

T2 -0.483 tad -2

T3 0.5208 tad -3

R 28.125 ft

F-12
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_. PAGE NO. QUANTITY VALUE UNITS .,

E-62 T 0.1 sec
i 1

_ T 0.i sec
: 2

|

E-63 D 0.00425 deg -I
NF 1

D 0.0014483 deg -I
NF 2

DNF 3 -0.0000734 deg -I

DNF 4 0.00002175 deg -I

DNF 5 -0.0006 deg -I

ENF 1 -0.0245 deg -I

ENF 2 -0.0017028 deg -I

ENF 3 -0.0010492 deg -I

. ENF 4 0.0000425 deg -I

ENF 5 0.0017892 deg -I

-• E-64 DSF 1 0. 0245 deg -I

DSF 2 0. 0017028 deg -I

DSF 3 0.0010492 deg -I

'_ ; DSF 4 -0. 0000425 deg -I t

: DSF 5 -0.001735 deg -l

i F-13
6"

IO
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I

E-65 DpMI .002 deg-i l
DpM 2 -.00072556 deg -I

DpM 3 .00111967 ' deg-i I

" DpM 4 .0002094 deg -I

DpM 5 .00036524 deg-i I

DpM 6 --.00007296 deg-i/rad/sec

_o 19.1637 rad/sec I

E-66 EpMI -.0025 deg-i I _

EpM 2 0.0004375 deg -I

EpM 0.0000729 deg -I i
3

EpM _ -0.000111245 deg -I l

EpM 5 0.00063045 deg -I

EpM 6 -.00006809 deg/rad/sec I

!

E-67 DyM 1 -.0025 deg -I J

DyM 2 .0004375 deg-i I

DyM 3 .0000792 deg "I

DyM & -0.000111245 ueg -I

DyM 5 0.0005 deg "l

DyM 6 -0.00007296 deg-I/rad/sec I

F-14
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I PAGE NO. QUANTITY VALUE UNITS
mm

EyM 1 -0. 002 deg -I

, i. EyM 2 0. 00072556 deg -I

i EyM 3 -0. 00111967 deg -I

EyM 4 -0. 0002094 deg -I

EyM 5 -0. 0004702 deg -I '
. .

EyM 6 0. 00007296 deg-I/rad/sec

J

E-68 fT !.0 ---
R

• fT 1.0 ---
L

fNF R 1.0 ---

_ fNF L 1.0 ---

fSF R -i.0 ---

fSF L -i.0 ---

fpM R 1.0 ---

fpM L i. 0 ---

• fyM R -i.0 ---

fyM L -i.0 ---

fQR -i.0 ---

fQL -i.0 ---

E-69 IE 0.40 slug-ft 2. .

E-72 KW 1 3.707xi0 -5 ft/lb
o .

KW2 1.023xi0 -5 ft/Ib

.. KW3 1.22xi0 -4 ft/Ib

F-15
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PAGE NO. QUANTITY VALUE UNITS

K 1.09x10 -2 slugs ft/ib

_4 4.66xi0 -3 slugs ft/ib
KW 5

KW6 1.004xi0 -5 ft/ib

KW7 _.49xi0 -5 ft/l_

2.37xi0 -5 ft/Ib
KW 8

KW9 2.94xi0 -3 slugs ft/ib

KWI 0 1.52xi0 -3 slugs ft/ib I

_Wl 0.5 ---

_WI 16.33 rad/sec

_W2 0.5 --- |

_W2 16.33 rad/sec 0

_W3 0.5 --- [

_W3 16.33 rad/sec ,

l
E-74 K8 4.90xi0 _ ft Ib/rad

dCMwc/4 -0.002 ---

dC L

C L 4.1832 rad -I _,

C 1 -0.0352 ---
C 2 -0.010154 deg -I

C 3 0.000081 deg-2 I

F-16
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J

2800 I II '

MAX 2660

/,
2600 NIL 25G0

NRP 2500 /

o // 2420
i 2400

EMERGENCY °
OVERTRAVE

2200 /

z

2000

1800 ( FLIGHTIDLE

SCHEDULE A

1600, ...

Q 2 4 6 8 i0

THROTTLE TRAVEL - INCHES

THRUST MANAGEMENT SYSTEM SCHEDULES

. F-19
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1
] L

3.0 J '

o | ,U

2.0 SCHEDULE D

I

H :

_.0 / 1ul

_ S,5

0
-i 0 1000 3000 4000 5000

ASHP

| " :o8 I I

< •7 SCHEDULE B | _

H

Z

o ', 1

,T

• 4 i i ii i

0 i000 2000 3000 4000 5000 "

POWER OUTPUT - HP

THRUST MANAGEMENT SYSTEM SC}LEDULES ..
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|

_ 1.4 '' i

tJ

tl]

s 1.2

CD

_'l.o
Z

Z
0
U -

.8 SCHEDULE C

Z

° ,...
Z

al .6

U
.4

.2

|, ,,

"" 0 i000 2000 3000 4000 5000

POWER OUTPUT - HP

THRUST MANAGEMENT SYSTEM SCHEDULES

w
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+i0 ]

"4 I0

I +5 SCHEDULE H

H

_, o
o 50 1oo 15o 200 2so ioo 3so

V (AIRSPEED)- KNOTS

_°_ _ ..../ " 2.75 DEG/INCH

o 2 ,/

m _ 1 -_" SCHEDULE F 7--

_= |o,_ 0 -.,
v, t9 0 I0 20 30 40 50 60 70 80 90 i00 ii0
Ill

NACELLE INCIDENCE -- DEG (iN PEP) I

40 ;_

<_' " !'

= _ _ _ SCHEDULE i

20 _----- _-

Ci [,i,] I _ _'__""_ I
I °
i,_l_ _

.... 11'
0 I0 20 30 40 50 60 70 80 90 I00 ll0 I

NACELLE INCIDENCE- DEG (i N REF )

• t
Z ul 1-6 i "
u_l.2

O _ _ .8 __""

_ I I
i

o____ .4i- _1 scHEDULEE --m I
.....

0 I0 20 30 40 50 60 70 80 90 100 ii0 7
I

NACELLE INCIDENCE- DEG ._

THRUST MANAGEMENT SYSTEM SCHEDULES

F-22

1977016150-241



1977016150-242



},i
238-10002-1 I ,_

I

/ I
li_o" ]

i

3o"
m i 'r /

'_ i 4 I

_ /. ° 1

/ \
"2 / ......

-.8 -.4 0 ,4 ,8 i. 2 1.6 2.0 [WING-ON-ROTOR UPWASH

J

F-24

I'

1977016150-243



l

L i*
" D238-I0002-I

q

i.

J
&..

. .

1.05

i t_

• i .04 " -

{

""': a(__)or 1.03 _ ...... i;"-" HT i
• Ii

1.02 \
i

..i \ __ /\ TAIL ',, \I I

1.oi

_o

_ I.00 " .'_.-'_-•

,; 0 20 40 60 80 10C

i _ HEIGHT ABOVE GROUND (hwc/4 or htc/4) FEET

ti
I VARIATION OF LIFT CURVE SLOPE WITH HEIGHT ABOVE GROUhq3

•: I F-25

?

1

1977016150-244



..... I !
L

7

D238-I0002-I i

t

3.0 : i
I

I__c__ _ _ ' _

i I
1.0 / I

0.000586o_f + 0.05485_f + 0.326081 0°_<_f<30 _

0.0
0 i0 20 30 40 50 6C 90

FLAP DEFLECTION - DEGREES I

I0.3

SLOPE

i

0.2 _ !
i ,

t

_o_-_:-o.ooooo5_}. o.ooo72__f+ o.2o3 I
O.l --

!
1

0.0 _
0 i0 20 30 40 50 60 76

FLAP DEFLECTION - DEGREES

DOWNWASH FUNCTIONS _ CT = 0, i = 2

F-26 {

1977016150-245


